机器学习笔记 - Kaggle竞赛 稻田病害分类

本文是关于Kaggle上的稻田病害分类比赛的笔记,重点介绍了使用FCN、VGG16、ResNet50等深度学习模型对稻叶图像进行分类的尝试。尽管FCN表现不佳,但预训练的ResNet50和VGG16模型在迁移学习中取得了较好的效果,最高在验证集上达到90%的准确率。EfficientNetB3在无预训练的情况下也取得了0.91118的Kaggle分数。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、比赛说明

        大米(Oryza sativa)是世界范围内的主食之一。稻谷是去壳前的粗粮,主要在亚洲国家在热带气候中种植。水稻种植需要持续监督,因为多种疾病和害虫可能会影响水稻作物,导致高达 70% 的产量损失。通常需要专家监督来减轻这些疾病并防止作物损失。由于作物保护专家的可用性有限,人工疾病诊断既繁琐又昂贵。因此,通过利用在各个领域取得可喜成果的基于计算机视觉的技术来自动化疾病识别过程变得越来越重要。

        本次比赛的主要目标是开发一种基于机器或深度学习的模型来准确分类给定的稻叶图像。我们提供了一个包含 10,407 个 (75%) 标记图像的训练数据集,涵盖 10 个类别(9 个疾病类别和正常叶片)。此外,我们还为每个图像提供额外的元数据,例如稻谷品种和年龄。您的任务是将给定测试数据集中的3,469 个 (25%) 图像中的每个水稻图像分类为九种疾病类别之一或正常叶子。

        页面地址

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

坐望云起

如果觉得有用,请不吝打赏

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值