4、不等式约束最优控制问题的局部搜索方案

不等式约束最优控制问题的局部搜索方案

1. 问题陈述与精确罚函数法

考虑如下状态线性控制系统(CS):
(\dot{x}(t) = A(t)x(t) + B(u(t), t)),(\forall t \in T := (t_0, t_1))
(x(t_0) = x_0)
(u(\cdot) \in U := {u(\cdot) \in L^r_{\infty}(T) | u(t) \in U^{\circ}, \forall t \in T})
其中,矩阵(A(t) = [a_{ij}(t)]_{i,j = 1}^{n})和向量(B(u, t))关于变量(t \in T = [t_0, t_1])和(u(t) \in U)((U)是(\mathbb{R}^r)中的紧集)连续。对于任意可行控制(u(\cdot) \in U)和(\forall x_0 \in \mathbb{R}^n),上述常微分方程组(ODEs)有唯一的绝对连续解(x(\cdot, u) \in AC^n(T) =: X)。

定义泛函(J_i(x(\cdot), u(\cdot)) := J_i(x, u)),(i \in {0} \cup I),(I = {1, \ldots, m}),形式如下:
(J_i(x, u) = \phi_{1i}(x(t_1)) + \int_{T} \phi_i(x(t), u(t), t)dt)
其中,(\phi_{1i}(x) := g_{1i}(x) - h_{1i}(x)),(\forall x \in \Omega_1 \subset \mathbb{R}^n),(\Omega_1)是包含控制系统在最终时刻(t_1)可达集(R(t

【电能质量扰动】基于ML和DWT的电能质量扰动分类方法研究(Matlab实现)内容概要:本文研究了一种基于机器学习(ML)和离散小波变换(DWT)的电能质量扰动分类方法,并提供了Matlab实现方案。首先利用DWT对电能质量信号进行多尺度分解,提取信号的时频域特征,有效捕捉电压暂降、暂升、中断、谐波、闪变等常见扰动的关键信息;随后结合机器学习分类器(如SVM、BP神经网络等)对提取的特征进行训练与分类,实现对不同类型扰动的自动识别与准确区分。该方法充分发挥DWT在信号去噪与特征提取方面的优势,结合ML强大的模式识别能力,提升了分类精度与鲁棒性,具有较强的实用价值。; 适合人群:电气工程、自动化、电力系统及其自动化等相关专业的研究生、科研人员及从事电能质量监测与分析的工程技术人员;具备一定的信号处理基础和Matlab编程能力者更佳。; 使用场景及目标:①应用于智能电网中的电能质量在线监测系统,实现扰动类型的自动识别;②作为高校或科研机构在信号处理、模式识别、电力系统分析等课程的教学案例或科研实验平台;③目标是提高电能质量扰动分类的准确性与效率,为后续的电能治理与设备保护提供决策依据。; 阅读建议:建议读者结合Matlab代码深入理解DWT的实现过程与特征提取步骤,重点关注小波基选择、分解层数设定及特征向量构造对分类性能的影响,并尝试对比不同机器学习模型的分类效果,以全面掌握该方法的核心技术要点。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值