11、图像噪声处理与滤波技术详解

图像噪声处理与滤波技术详解

1. 噪声的概念

在信号处理领域,噪声是混入预期信号中的任何不需要的信号。在图像或视频中,噪声可定义为像素强度和颜色的不期望变化。噪声的来源多种多样,例如:
- 相机镜头上的灰尘
- 胶卷颗粒(在模拟摄影和电影制作中有时是期望的)
- CCD 传感器及其存储中的错误
- 传输和接收过程中的错误
- 扫描照片时的错误

高噪声会降低有用信号,影响图像质量。信号与噪声的比例可以用以下公式表示,且信号 - 噪声比越高,信号和图像的质量越好。

2. 向图像引入噪声

我们可以通过模拟各种类型的噪声向数字图像引入噪声,以下是几种常见噪声的模拟方法:
- 椒盐噪声 :随机在图像中引入白色(盐)和黑色(胡椒)像素。以下是向灰度图像引入椒盐噪声的代码:

import numpy as np
import cv2
import random
import matplotlib.pyplot as plt
img = cv2.imread('/home/pi/book/dataset/4.1.03.tiff', 0)
output = np.zeros(img.shape, np.uint8)
p = 0.05
for i in range (img.shape[0]):
    for j in range(img.shape[1]):
        r = random.random()
        if r < p/2:
            output
【2025年10月最新优化算法】混沌增强领导者黏菌算法(Matlab代码实现)内容概要:本文档介绍了2025年10月最新提出的混沌增强领导者黏菌算法(Matlab代码实现),属于智能优化算法领域的一项前沿研究。该算法结合混沌机制黏菌优化算法,通过引入领导者策略提升搜索效率和全局寻优能力,适用于复杂工程优化问题的求解。文档不仅提供完整的Matlab实现代码,还涵盖了算法原理、性能验证及其他优化算法的对比分析,体现了较强的科研复现性和应用拓展性。此外,文中列举了大量相关科研方向和技术应用场景,展示其在微电网调度、路径规划、图像处理、信号分析、电力系统优化等多个领域的广泛应用潜力。; 适合人群:具备一定编程基础和优化理论知识,从事科研工作的研究生、博士生及高校教师,尤其是关注智能优化算法及其在工程领域应用的研发人员;熟悉Matlab编程环境者更佳。; 使用场景及目标:①用于解决复杂的连续空间优化问题,如函数优化、参数辨识、工程设计等;②作为新型元启发式算法的学习教学案例;③支持高水平论文复现算法改进创新,推动在微电网、无人机路径规划、电力系统等实际系统中的集成应用; 其他说明:资源包含完整Matlab代码和复现指导,建议结合具体应用场景进行调试拓展,鼓励在此基础上开展算法融合性能优化研究。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值