6、树莓派Python编程与计算机视觉入门

树莓派Python编程与计算机视觉入门

1. 树莓派GPIO按钮编程

在树莓派开发中,我们可以通过GPIO接口连接按钮来实现交互功能。下面介绍两种不同的按钮连接方式及对应的代码实现。

1.1 内部上拉电阻连接方式

首先,准备一个电路,将按钮的一端连接到树莓派的7号引脚,另一端连接到GND。以下是对应的Python代码:

from time import sleep
import RPi.GPIO as GPIO
GPIO.setmode(GPIO.BOARD)
GPIO.setwarnings(False)
button = 7
GPIO.setup(button, GPIO.IN, GPIO.PUD_UP)
while True:
    button_state = GPIO.input(button)
    if button_state == GPIO.HIGH:
        print ("HIGH")
    else:
        print ("LOW")
    sleep(0.5)

在上述代码中,我们将7号引脚初始化为输入引脚。 GPIO.setup() 函数的第二个参数决定了GPIO引脚的模式(输入或输出),第三个参数 GPIO.PUD_UP 表示连接到内部上拉电阻。当按钮未按下时,连接按钮的GPIO引脚为高电平;按下按钮时,引脚为低电平。运行程序后,按钮未按下时输出 HIGH ,按下时输出 LOW 。程序可

深度学习作为人工智能的关键分支,依托多层神经网络架构对高维数据进行模式识别函数逼近,广泛应用于连续变量预测任务。在Python编程环境中,得益于TensorFlow、PyTorch等框架的成熟生态,研究者能够高效构建面向回归分析的神经网络模型。本资源库聚焦于通过循环神经网络及其优化变体解决时序预测问题,特别针对传统RNN在长程依赖建模中的梯度异常现象,引入具有门控机制的长短期记忆网络(LSTM)以增强序列建模能力。 实践案例涵盖从数据预处理到模型评估的全流程:首先对原始时序数据进行标准化处理滑动窗口分割,随后构建包含嵌入层、双向LSTM层及全连接层的网络结构。在模型训练阶段,采用自适应矩估计优化器配合早停策略,通过损失函数曲线监测过拟合现象。性能评估不仅关注均方根误差等量化指标,还通过预测值真实值的轨迹可视化进行定性分析。 资源包内部分为三个核心模块:其一是经过清洗的金融时序数据集,包含标准化后的股价波动记录;其二是模块化编程实现的模型构建、训练验证流程;其三是基于Matplotlib实现的动态结果展示系统。所有代码均遵循面向对象设计原则,提供完整的类型注解异常处理机制。 该实践项目揭示了深度神经网络在非线性回归任务中的优势:通过多层非线性变换,模型能够捕获数据中的高阶相互作用,而Dropout层正则化技术的运用则保障了泛化能力。值得注意的是,当处理高频时序数据时,需特别注意序列平稳性检验季节性分解等预处理步骤,这对预测精度具有决定性影响。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值