Block-wise 2D kernel PCA/LDA for face recognition-笔记

本文提出了一种基于核技术的2D特征提取算法框架,专门用于人脸识别,该框架通过引入块状模型和更高阶的统计依赖性,显著提升了人脸识别的准确性和可靠性。同时,文中也讨论了2D-KPCA面临的计算复杂性和局部特性学习不足的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

In the present work, we propose a framework for kernel-based 2D feature extraction algorithms tailored to face recognition .     
extending 2D-PCA/LDA in the following two aspects: 
(1)
kernel technique is incorporated to capture the higher order statistical dependencies among the rows of input images. Thus, face recognition results are considerably improved 
(2)A block-wise model for face recognition is introduced and proved to be reliable through our experiments.  





 

 

2D-KPCA所带来的问题:

(1)Computational complexity: unlike direct extension of 2D-PCA/LDA to kernel-induced feature space which is computationally intractable, proposed B2D-KPCA/GDA perform subspace projection inside each block manifold, significantly alleviating computational cost 
(2)Locality: as widely known, distribution of face images is both multimodal and highly nonlinear [7,17]. Direct extension of 2D-PCA/LDA to kernel-induced feature space, overcomes the shortcomings of 2D-PCA/LDA in extracting global nonlinear structure of input data, but fails to learn local characteristics of input data. 






 

转载于:https://www.cnblogs.com/xiaolong19910914/p/8548180.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值