Pytorch定义模型的三种方式
Pytorch通常有三种方式构建模型:使用nn.Sequential按层顺序构建模型,继承nn.Module基类构建自定义模型,继承nn.Module基类构建模型并辅助应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)进行封装。
第一种:用nn.Sequential按层顺序构建模型
def creatModel():
model=nn.Sequential()
model.add_module('conv1',nn.Conv2d(in_channels=3,out_channels=32,kernel_size=3))
model.add_module('pool',nn.MaxPool2d(kernel_size=2,stride=2))
model.add_module('conv2',nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5))
model.add_module('dropout',nn.Dropout2d(p=0.1))
model.add_module('adaptive_pool',nn.AdaptiveMaxPool2d((1,1)))
model.add_module('flatten',nn.Flatten())
model.add_module('linear1',nn.Linear(64,32))
model.add_module('relu',nn.ReLU())
model.add_module('linear2',nn.Linear(32,1))
model.add_module('sigmoid',nn.Sigmoid())
return model
mymodel=creatModel()
print(mymodel)
torchkeras.summary(mymodel,input_shape=(3,512,512))
结果为:
Sequential(
(conv1): Conv2d(3, 32, kernel_size=(3, 3), stride=(1, 1))
(pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
(conv2): Conv2d(32, 64, kernel_size=(5, 5), stride=(1, 1))
(dropout): Dropout2d(p=0.1, inplace=False)
(adaptive_pool): AdaptiveMaxPool2d(output_size=(1, 1))
(flatten): Flatten(start_dim=1, end_dim=-1)
(linear1): Linear(in_features=64, out_features=32, bias=True)
(relu): ReLU()
(linear2): Linear(in_features=32, out_features=1, bias=True)
(sigmoid): Sigmoid()
)
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 32, 510, 510] 896
MaxPool2d-2 [-1, 32, 255, 255] 0
Conv2d-3 [-1, 64, 251, 251] 51,264
Dropout2d-4 [-1, 64, 251, 251] 0
AdaptiveMaxPool2d-5 [-1, 64, 1, 1] 0
Flatten-6 [-1, 64] 0
Linear-7 [-1, 32] 2,080
ReLU-8 [-1, 32] 0
Linear-9 [-1, 1] 33
Sigmoid-10 [-1, 1] 0
================================================================
Total params: 54,273
Trainable params: 54,273
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 3.000000
Forward/backward pass size (MB): 140.902115
Params size (MB): 0.207035
Estimated Total Size (MB): 144.109150
----------------------------------------------------------------
第二种:继承nn.Module基类构建自定义模型
import torch
from torch import nn
class MyModel(nn.Module):
def __init__(self):
super(MyModel,self).__init__()
self.conv1=nn.Conv2d(in_channels=3,out_channels=32,kernel_size=3)
self.pool=nn.MaxPool2d(kernel_size=2,stride=2)
self.conv2=nn.Conv2d(in_channels=32,out_channels=64,kernel_size=5)
self.dropout=nn.Dropout2d(p=0.1)
self.adaptive_pool=nn.AdaptiveMaxPool2d((1,1))
self.flatten=nn.Flatten()
self.linear1=nn.Linear(64,32)
self.relu=nn.ReLU()
self.linear2=nn.Linear(32,1)
self.sigmoid=nn.Sigmoid()
def forward(self,x):
x=self.conv1(x)
x=self.pool(x)
x=self.conv2(x)
x=self.dropout(x)
x=self.adaptive_pool(x)
x=self.flatten(x)
x=self.linear1(x)
x=self.relu(x)
x=self.linear2(x)
y=self.sigmoid(x)
return y
model =MyModel()
import torchkeras
torchkeras.summary(model,input_shape=(3,512,512))
运行结果如下:
----------------------------------------------------------------
Layer (type) Output Shape Param #
================================================================
Conv2d-1 [-1, 32, 510, 510] 896
MaxPool2d-2 [-1, 32, 255, 255] 0
Conv2d-3 [-1, 64, 251, 251] 51,264
Dropout2d-4 [-1, 64, 251, 251] 0
AdaptiveMaxPool2d-5 [-1, 64, 1, 1] 0
Flatten-6 [-1, 64] 0
Linear-7 [-1, 32] 2,080
ReLU-8 [-1, 32] 0
Linear-9 [-1, 1] 33
Sigmoid-10 [-1, 1] 0
================================================================
Total params: 54,273
Trainable params: 54,273
Non-trainable params: 0
----------------------------------------------------------------
Input size (MB): 3.000000
Forward/backward pass size (MB): 140.902115
Params size (MB): 0.207035
Estimated Total Size (MB): 144.109150
----------------------------------------------------------------
第三种:继承nn.Module基类构建模型并辅助应用模型容器(nn.Sequential,nn.ModuleList,nn.ModuleDict)进行封装
当模型比较复杂时,可使用