结论:补码表示法可以实现任何两个用补码表示的有符号数的加法而不需要特殊的硬件。
完成实际项目:
1.半加器
CHIP HalfAdder {
IN a, b; // 1-bit inputs
OUT sum, // Right bit of a + b
carry; // Left bit of a + b
PARTS:
Xor(a=a,b=b,out=sum);
And(a=a,b=b,out=carry);
2.全加器
CHIP FullAdder {
IN a, b, c; // 1-bit inputs
OUT sum, // Right bit of a + b + c
carry; // Left bit of a + b + c
PARTS:
HalfAdder(a=a,b=b,sum=s1,carry=c1);
HalfAdder(a=s1,b=c,sum=sum,carry=c2);
Or(a=c1,b=c2,out=carry);
}
3.加法器ADD16
串联式
CHIP Add16 {
IN a[16], b[16];
OUT out[16];
PARTS:
HalfAdder(a=a[0],b=b[0],sum=out[0],carry=c1);
FullAdder(a=a[1],b=b[1],c=c1,sum=out[1],carry=c2);
FullAdder(a=a[2],b=b[2],c=c2,sum=out[2],carry=c3);
FullAdder(a=a[3],b=b[3],c=c3,sum=out[3],carry=c4);
FullAdder(a=a[4],b=b[4],c=c4,sum=out[4],carry=c5);
FullAdder(a=a[5],b=b[5],c=c5,sum=out[5],carry=c6);
FullAdder(a=a[6],b=b[6],c=c6,sum=out[6],carry=c7);
FullAdder(a=a[7],b=b[7],c=c7,sum=out[7],carry=c8);
FullAdder(a=a[8],b=b[8],c=c8,sum=out[8],carry=c9);
FullAdder(a=a[9],b=b[9],c=c9,sum=out[9],carry=c10);
FullAdder(a=a[10],b=b[10],c=c10,sum=out[10],carry=c11);
FullAdder(a=a[11],b=b[11],c=c11,sum=out[11],carry=c12);
FullAdder(a=a[12],b=b[12],c=c12,sum=out[12],carry=c13);
FullAdder(a=a[13],b=b[13],c=c13,sum=out[13],carry=c14);
FullAdder(a=a[14],b=b[14],c=c14,sum=out[14],carry=c15);
FullAdder(a=a[15],b=b[15],c=c15,sum=out[15],carry=c16);
4.算术逻辑单元(ALU)
/**
* The ALU (Arithmetic Logic Unit).
* Computes one of the following functions:
* x+y, x-y, y-x, 0, 1, -1, x, y, -x, -y, !x, !y,
* x+1, y+1, x-1, y-1, x&y, x|y on two 16-bit inputs,
* according to 6 input bits denoted zx,nx,zy,ny,f,no.
* In addition, the ALU computes two 1-bit outputs:
* if the ALU output == 0, zr is set to 1; otherwise zr is set to 0;
* if the ALU output < 0, ng is set to 1; otherwise ng is set to 0.
*/
// Implementation: the ALU logic manipulates the x and y inputs
// and operates on the resulting values, as follows:
// if (zx == 1) set x = 0 // 16-bit constant
// if (nx == 1) set x = !x // bitwise not
// if (zy == 1) set y = 0 // 16-bit constant
// if (ny == 1) set y = !y // bitwise not
// if (f == 1) set out = x + y // integer 2's complement addition
// if (f == 0) set out = x & y // bitwise and
// if (no == 1) set out = !out // bitwise not
// if (out == 0) set zr = 1
// if (out < 0) set ng = 1
CHIP ALU {
IN
x[16], y[16], // 16-bit inputs
zx, // zero the x input?
nx, // negate the x input?
zy, // zero the y input?
ny, // negate the y input?
f, // compute out = x + y (if 1) or x & y (if 0)
no; // negate the out output?
OUT
out[16], // 16-bit output
zr, // 1 if (out == 0), 0 otherwise
ng; // 1 if (out < 0), 0 otherwise
PARTS:
Mux16(a=x,b[0..15]=false,sel=zx,out=x1);
Not16(in=x1,out=nx1);
Mux16(a=x1,b=nx1,sel=nx,out=x2);
Mux16(a=y,b[0..15]=false,sel=zy,out=y1);
Not16(in=y1,out=ny1);
Mux16(a=y1,b=ny1,sel=ny,out=y2);
Add16(a=x2,b=y2,out=o1);
And16(a=x2,b=y2,out=o2);
Mux16(a=o2,b=o1,sel=f,out=o3);
Not16(in=o3,out=no3);
Mux16(a=o3,b=no3,sel=no,out=o4);
And16(a[0..15]=true,b=o4,out=out);
Or16Way(in=o4,out=o5);
Not(in=o5,out=zr);
And16(a=o4,b[0..14]=false,b[15]=true,out=ng1);
Or16Way(in=ng1,out=ng);
}
在这个项目构建中,需要用到前面的.HDL文件,只需要把所要的.HDL文件放在同一个目录下面就可以了。