一、事务
概念
事务指的是满足 ACID 特性的一组操作,可以通过 Commit 提交一个事务,也可以使用 Rollback 进行回滚。
ACID
1. 原子性(Atomicity)
事务被视为不可分割的最小单元,事务的所有操作要么全部提交成功,要么全部失败回滚。
回滚可以用日志来实现,日志记录着事务所执行的修改操作,在回滚时反向执行这些修改操作即可。
2. 一致性(Consistency)
数据库在事务执行前后都保持一致性状态。在一致性状态下,所有事务对一个数据的读取结果都是相同的。
3. 隔离性(Isolation)
一个事务所做的修改在最终提交以前,对其它事务是不可见的。
4. 持久性(Durability)
一旦事务提交,则其所做的修改将会永远保存到数据库中。即使系统发生崩溃,事务执行的结果也不能丢失。
可以通过数据库备份和恢复来实现,在系统发生崩溃时,使用备份的数据库进行数据恢复。
AUTOCOMMIT
MySQL 默认采用自动提交模式。也就是说,如果不显式使用START TRANSACTION
语句来开始一个事务,那么每个查询都会被当做一个事务自动提交。
二、并发一致性问题
在并发环境下,事务的隔离性很难保证,因此会出现很多并发一致性问题。
丢失修改
T1 和 T2 两个事务都对一个数据进行修改,T1 先修改,T2 随后修改,T2 的修改覆盖了 T1 的修改。
读脏数据
(针对未提交数据)如果一个事务中对数据进行了更新,但事务还没有提交,另一个事务可以“看到”该事务没有提交的更新结果,这样造成的问题就是,如果第一个事务回滚,那么,第二个事务在此之前所“看到”的数据就是一笔脏数据。
不可重复读
(针对其他提交前后,读取数据本身的对比)不可重复读取是指同一个事务在整个事务过程中对同一笔数据进行读取,每次读取结果都不同。如果事务1在事务2的更新操作之前读取一次数据,在事务2的更新操作之后再读取同一笔数据一次,两次结果是不同的,所以,Read Uncommitted也无法避免不可重复读取的问题。
幻影读
(针对其他提交前后,读取数据条数的对比) 幻读是指同样一笔查询在整个事务过程中多次执行后,查询所得的结果集是不一样的。幻读针对的是多笔记录。在Read Uncommitted隔离级别下, 不管事务2的插入操作是否提交,事务1在插入操作之前和之后执行相同的查询,取得的结果集是不同的,所以,Read Uncommitted同样无法避免幻读的问题。
产生并发不一致性问题主要原因是破坏了事务的隔离性,解决方法是通过并发控制来保证隔离性。并发控制可以通过封锁来实现,但是封锁操作需要用户自己控制,相当复杂。数据库管理系统提供了事务的隔离级别,让用户以一种更轻松的方式处理并发一致性问题。
三、封锁
封锁粒度
MySQL 中提供了两种封锁粒度:行级锁以及表级锁。
应该尽量只锁定需要修改的那部分数据,而不是所有的资源。锁定的数据量越少,发生锁争用的可能就越小,系统的并发程度就越高。
但是加锁需要消耗资源,锁的各种操作(包括获取锁、释放锁、以及检查锁状态)都会增加系统开销。因此封锁粒度越小,系统开销就越大。
在选择封锁粒度时,需要在锁开销和并发程度之间做一个权衡。
封锁类型
封锁就是事务T在对某个数据对象操作之前,先向系统发出请求对其加锁。加锁后事务T就对该数据对象有了一定的控制,在事务T释放它的锁之前,其他事务不能更新此数据对象。基本的锁类型有两种:排他锁(又称写锁,X锁)和共享锁(又称读锁,S锁),此处再加一个更新锁和意向锁。
-
- 排他锁(X锁):若事务T对数据对象A加上X锁,则只允许T读取和修改A,其他任何事务都不能在对A加任何类型的锁,直到T释放A上的锁为止。这就保证了其他事务在T释放A上的锁之前不能再读取和修改A。
- 共享锁(S锁):若事务T对数据对象A加上S锁,则只允许T读A但不能修改A,其他事务只能再对A加S锁而不能加X锁,知道T释放A上的S锁为止。
- 更新锁(U锁):更新锁在修改操作的初始化阶段用来锁定可能要被修改的资源,这样可以避免使用共享锁造成的死锁现象。因为使用共享锁时,修改数据的操作分为两步,首先获得一个共享锁,读取数据,然后将共享锁升级为排它锁,然后再执行修改操作。这样如果同时有两个或多个事务同时对一个事务申请了共享锁,在修改数据的时候,这些事务都要将共享锁升级为排它锁。这时,这些事务都不会释放共享锁而是一直等待对方释放,这样就造成了死锁。如果一个数据在修改前直接申请更新锁,在数据修改的时候再升级为排它锁,就可以避免死锁。参考博文http://blog.youkuaiyun.com/zdplife/article/details/48035837
- 意向锁:对多粒度树中的结点加意向锁,则说明该结点的下层结点正在被加锁;对任一结点加锁时,必须先对它的上层结点加意向锁。
封锁协议
在运用X锁和S锁这两种基本封锁对数据对象加锁时,还需要约定一些规则。例如,何时申请X锁或S锁、持锁时间、何时释放等。这些规则称为封锁协议。通常使用三级封锁协议来在不同程度上解决并发操作的不正确调度带来的丢失修改、不可重复读和读“脏”数据等不一致性问题。
- 一级封锁协议
一级封锁协议是指,事务T在修改数据R之前必须先对其加X锁,直到事务结束才释放。一级封锁协议可以防止丢失修改,并保证事务T是可恢复的。
- 二级封锁协议
二级封锁协议是指,在一级封锁协议基础上增加事务T在读数据R之前必须先对其加S锁,读完后即可释放S锁。二级封锁协议出防止了丢失修改,还可以进一步防止读“脏”数据。
- 三级封锁协议
三级封锁协议是指,在一级封锁协议的基础上增加事务T在读数据R之前必须先对其加S锁,直到事务结束才释放。三级封锁协议出防止了丢失修改和读“脏”数据外,还可以进一步防止了不可重复读。
四、隔离级别
未提交读(READ UNCOMMITTED)
事务中的修改,即使没有提交,对其它事务也是可见的。
提交读(READ COMMITTED)
一个事务只能读取已经提交的事务所做的修改。换句话说,一个事务所做的修改在提交之前对其它事务是不可见的。
可重复读(REPEATABLE READ)
保证在同一个事务中多次读取同样数据的结果是一样的。
可串行化(SERIALIZABLE)
强制事务串行执行。
隔离级别 | 脏读 | 不可重复读 | 幻影读 |
---|---|---|---|
未提交读 | √ | √ | √ |
提交读 | × | √ | √ |
可重复读 | × | × | √ |
可串行化 | × | × | × |
五、多版本并发控制
多版本并发控制(Multi-Version Concurrency Control, MVCC)是 MySQL 的 InnoDB 存储引擎实现隔离级别的一种具体方式,用于实现提交读和可重复读这两种隔离级别。而未提交读隔离级别总是读取最新的数据行,无需使用 MVCC。可串行化隔离级别需要对所有读取的行都加锁,单纯使用 MVCC 无法实现(MVCC + Next-Key Locks 可以解决幻读问题)。