转载自:http://www.lxway.com/49629084.htm
AC代码如下:、
public class Problem4 {
public static void main(String[] args) {
// TODO Auto-generated method stub
int[] nums1={1,3};
int[] nums2={2};
System.out.println(findMedianSortedArrays(nums1,nums2));
}
public static double findMedianSortedArrays(int[] nums1, int[] nums2) {
int m = nums1.length;
int n = nums2.length;
int k = m + n;
if((k&1)==1)
{
return find(nums1, 0, m, nums2, 0, n, k/2+1);
}else
return (find(nums1, 0, m, nums2, 0, n, k/2)+find(nums1, 0, m, nums2, 0, n, k/2+1))/2;
}
//递归算法,不断缩小两个数组的范围,同时k的值也相对两个搜索区间上限起始点而改变
public static double find(int[] A, int aStart, int aEnd, int[] B, int bStart, int bEnd,int kth)
{
//1. 统一将长度短的放置于find函数参数的前面项
if(aEnd>bEnd)
return find(B, bStart, bEnd, A, aStart, aEnd, kth);
//2. 长度短的为空,则答案等同于求另外一个数组的中位数
if(aEnd<=0)
return B[bStart + kth -1];
//3. 递归到终点,两个数组的aStart和bStart已经到了中位数的位置
if(kth==1)
return min(A[aStart],B[bStart]);
int pa = min(kth/2,aEnd), pb = kth-pa;
if(A[aStart + pa-1]< B[bStart +pb -1])
return find(A, aStart+pa, aEnd-pa, B, bStart, bEnd, kth-pa );
else
return find(A, aStart, aEnd, B, bStart + pb, bEnd - pb,kth-pb);
}
public static int min(int a, int b)
{
return a>b?b:a;
}
}