Uva 10003 切木棍(dp)

本文介绍了一种通过动态规划解决木棍最优切割的问题,旨在找到将木棍按指定位置切割成多段时所需的最低成本。文章提供了完整的AC代码示例,并详细解释了背后的算法原理。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

You have to cut a wood stick into pieces. The most affordable company, The Analog Cutting Machinery,Inc. (ACM), charges money according to the length of the stick being cut. Their procedure of workrequires that they only make one cut at a time.It is easy to notice that different selections in the order of cutting can led to different prices. Forexample, consider a stick of length 10 meters that has to be cut at 2, 4 and 7 meters from one end.

Another choice could be cutting at 4, then at 2, then at 7. This would lead to a price of 10 + 4 + 6 =20, which is a better price.

Your boss trusts your computer abilities to nd out the minimum cost for cutting a given stick.

Input
The input will consist of several input cases. The rst line of each test case will contain a positive number l that represents the length of the stick to be cut. You can assume l < 1000. The next line will contain the number n(n<50) of cuts to be made.
The next line consists of n positive numbers ci (0 < ci < l) representing the places where the cuts have to be done, given in strictly increasing order.
An input case with l = 0 will represent the end of the input.
Output
You have to print the cost of the optimal solution of the cutting problem, that is the minimum cost of
cutting the given stick. Format the output as shown below.

SampleInput
100
3
25 50 75
10
4
4 5 7 8
0

SampleOutput
The minimum cutting is 200.
The minimum cutting is 22.

题意

有一个长为L的棍子,还有n个切割点的位置(按从小到大排列)。你的任务是在这些切割点的位置处把棍子切成n+1部分,使得总切割的费用最少。每次切割的费用等于被切割的木棍长度。例如:L = 10,切割点为2,4,7.如果按照2,4,7来切的话,费用为10+8+6 = 24。

分析

设切割小木棍i~j的最优费用为d(i,j),则d(i,j) = min(d(i,k)+d(k,j)+a[j]-a[i]);
就是求d(0,n+1)即可。边界条件为:if(i >= j -1) d(i,j) = 0;
用记忆化更易实现。
AC代码:

#include <map>
#include <set>
#include <list>
#include <cmath>
#include <ctime>
#include <deque>
#include <queue>
#include <stack>
#include <string>
#include <bitset>
#include <cstdio>
#include <limits>
#include <vector>
#include <climits>
#include <cstring>
#include <cstdlib>
#include <fstream>
#include <numeric>
#include <sstream>
#include <iostream>
#include <algorithm>
#define MEM(a,x) memset(a,x,sizeof(a))
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
const int INF = 100000000;
int dp[55][55], a[55];
int d(int l, int r)
{
    int& ret = dp[l][r];
    if(ret != -1) return ret;
    if(l >= r -1) return ret = 0;
    ret = INF;
    for(int i = l+1; i < r; i++)
    {
        ret = min(ret, d(l, i)+d(i, r)+ a[r] - a[l]);
    }
    return ret;
}
int main()
{
    freopen("in.txt","r",stdin);
    //freopen("out.txt","w",stdout);
    int l;
    while(cin >> l && l)
    {
        int n;
        cin >> n;
        for(int i = 1; i <= n; i++)
            cin >> a[i];
        a[0] = 0;
        a[n+1] = l;
        MEM(dp, -1);
        printf("The minimum cutting is %d.\n", d(0,n+1));
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值