pku 1061

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

分析:假设跳了T次以后,青蛙1的坐标便是x+m*T,青蛙2的坐标为y+n*T。它们能够相遇的情况为(x+m*T)-(y+n*T)==P*L,其中P为某一个整数,变形一下

得到(n-m)*T+P*L==x-y   我们设a=(n-m),b=L,c=x-y,T=x,P=y.于是便得到ax+by==c。激动啊,这不就是上面一样的式子吗~

直接套用扩展欧几里得函数,得到一组解x,y。由于问题是问最少跳多少次,于是只有x是我们需要的信息。那么再想,x是最小的吗?

答案是可能不是!那么如何得到最小解呢?  我们考虑x的所有解的式子: x=x0+b/d*t。x0是我们刚刚求到的,很显然右边是有个单调函数,当t为某一个与x正负性质相反的数时,可以得到最小的x。 令x的正负性质为正,那么x=x0-b/d*t1 (t1==-t)。令x==0,那么t=x0*d/b,最小的x等于x0减去t*b/d。这里得到的x可能是负数,如果是负数,我们再为它加上一个b/d即是所求答案了!

这个题还有一点要注意的是,数据范围,long long啊

<pre class="html" name="code">#include <iostream>

using namespace std;
long long x,y;
long long exgcd(long long a,long long b)
{
  long long t,d;
  if(b==0)
  {
   x=1;
   y=0;
   return a;
  }
  d=exgcd(b,a%b);
  t=x;
  x=y;
  y=t-(a/b)*y;
  return d;
}
int main()
{
    long long m,n,X,Y,l,a,b,c,tmp;
    while(cin>>X>>Y>>m>>n>>l)
    {
     a=n-m;
     b=l;
     c=X-Y;
     tmp=exgcd(a,b);
     if(c%tmp!=0)
     {
      cout<<"Impossible"<<endl;
      continue;
     }
     x=x*(c/tmp);
     y=y*(c/tmp);
     long long k=x*tmp/b;//求最小值,利用(整数除法取整)
     k=x-k*b/tmp;
     if(k<0)
        k=k+b/tmp;
    cout <<k<< endl;
    }
    return 0;
}


 


                
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值