poj 1459

A power network consists of nodes (power stations, consumers and dispatchers) connected by power transport lines. A node u may be supplied with an amount s(u) >= 0 of power, may produce an amount 0 <= p(u) <= p max(u) of power, may consume an amount 0 <= c(u) <= min(s(u),c max(u)) of power, and may deliver an amount d(u)=s(u)+p(u)-c(u) of power. The following restrictions apply: c(u)=0 for any power station, p(u)=0 for any consumer, and p(u)=c(u)=0 for any dispatcher. There is at most one power transport line (u,v) from a node u to a node v in the net; it transports an amount 0 <= l(u,v) <= l max(u,v) of power delivered by u to v. Let Con=Σ        uc(u) be the power consumed in the net. The problem is to compute the maximum value of Con.        

An example is in figure 1. The label x/y of power station u shows that p(u)=x and p max(u)=y. The label x/y of consumer u shows that c(u)=x and c max(u)=y. The label x/y of power transport line (u,v) shows that l(u,v)=x and l max(u,v)=y. The power consumed is Con=6. Notice that there are other possible states of the network but the value of Con cannot exceed 6.        

Input

There are several data sets in the input. Each data set encodes a power network. It starts with four integers: 0 <= n <= 100 (nodes), 0 <= np <= n (power stations), 0 <= nc <= n (consumers), and 0 <= m <= n^2 (power transport lines). Follow m data triplets (u,v)z, where u and v are node identifiers (starting from 0) and 0 <= z <= 1000 is the value of l max(u,v). Follow np doublets (u)z, where u is the identifier of a power station and 0 <= z <= 10000 is the value of p max(u). The data set ends with nc doublets (u)z, where u is the identifier of a consumer and 0 <= z <= 10000 is the value of c max(u). All input numbers are integers. Except the (u,v)z triplets and the (u)z doublets, which do not contain white spaces, white spaces can occur freely in input. Input data terminate with an end of file and are correct.      

Output

For each data set from the input, the program prints on the standard output the maximum amount of power that can be consumed in the corresponding network. Each result has an integral value and is printed from the beginning of a separate line.      

Sample Input

2 1 1 2 (0,1)20 (1,0)10 (0)15 (1)20
7 2 3 13 (0,0)1 (0,1)2 (0,2)5 (1,0)1 (1,2)8 (2,3)1 (2,4)7
         (3,5)2 (3,6)5 (4,2)7 (4,3)5 (4,5)1 (6,0)5
         (0)5 (1)2 (3)2 (4)1 (5)4

Sample Output

15
6

Hint

The sample input contains two data sets. The first data set encodes a network with 2 nodes, power station 0 with pmax(0)=15 and consumer 1 with cmax(1)=20, and 2 power transport lines with lmax(0,1)=20 and lmax(1,0)=10. The maximum value of Con is 15. The second data set encodes the network from figure 1.

这个题不是一般的坑啊,格式问题

#include <iostream>
#include <stdio.h>
using namespace std;
const int oo=1e9;
const int mm=111111;
const int mn=999;
int node,scr,dest,edge;
int ver[mm],flow[mm],next[mm];
int head[mn],work[mn],dis[mn],q[mn];
void prepare(int _node,int _scr,int _dest)
{
 node=_node,scr=_scr,dest=_dest;
 for(int i=0;i<node;++i)
  head[i]=-1;
 edge=0;
}
void addedge(int u,int v,int c)
{
 ver[edge]=v,flow[edge]=c,next[edge]=head[u],head[u]=edge++;
 ver[edge]=u,flow[edge]=0,next[edge]=head[v],head[v]=edge++;
}
bool Dinic_bfs()
{
 int i,u,v,l,r=0;
 for(i=0;i<node;i++)
   dis[i]=-1;
 dis[q[r++]=scr]=0;
 for(l=0; l<r; ++l)
 {
   for(i=head[u=q[l]];i>=0;i=next[i])
   {
     if(flow[i]&&dis[v=ver[i]]<0)
     {
      dis[q[r++]=v]=dis[u]+1;
      if(v==dest)
      return 1;
     }
   }
 }
  return 0;
}
int Dinic_dfs(int u,int exp)
{
 if(u==dest) return exp;
 for(int &i=work[u],v,tmp;i>=0;i=next[i])
  if(flow[i]&&dis[v=ver[i]]==dis[u]+1&&(tmp=Dinic_dfs(v,min(exp,flow[i])))>0)
  {
   flow[i]-=tmp;
   flow[i^1]+=tmp;
   return tmp;
  }
  return 0;
}
int Dinic_flow()
{
 int i,ret=0,delta;
 while(Dinic_bfs())
 {
  for(i=0;i<node;++i) work[i]=head[i];
  while(delta=Dinic_dfs(scr,oo)) ret+=delta;
 }
 return ret;
}
int main()
{
 int a,b,c,d;
 int u,v,z;
 char hehe;
 while(cin>>a>>b>>c>>d)
 {
  prepare(a+3,0,a+1);
  for(int i=0;i<d;i++)
  {
    while(getchar()!='(');
    scanf("%d,%d)%d",&u,&v,&z);
   addedge(u+1,v+1,z);
  }
  for(int i=0;i<b;i++)
  {
   while(getchar()!='(');
   scanf("%d)%d",&u,&z);
   addedge(0,u+1,z);
  }
  for(int i=0;i<c;i++)
  {
   while(getchar()!='(');
   scanf("%d)%d",&u,&z);
   addedge(u+1,a+1,z);
  }
  cout<<Dinic_flow()<<endl;
 }
 return 0;
}


 

 

内容概要:本文介绍了多种开发者工具及其对开发效率的提升作用。首先,介绍了两款集成开发环境(IDE):IntelliJ IDEA 以其智能代码补全、强大的调试工具和项目管理功能适用于Java开发者;VS Code 则凭借轻量级和多种编程语言的插件支持成为前端开发者的常用工具。其次,提到了基于 GPT-4 的智能代码生成工具 Cursor,它通过对话式编程显著提高了开发效率。接着,阐述了版本控制系统 Git 的重要性,包括记录代码修改、分支管理和协作功能。然后,介绍了 Postman 作为 API 全生命周期管理工具,可创建、测试和文档化 API,缩短前后端联调时间。再者,提到 SonarQube 这款代码质量管理工具,能自动扫描代码并检测潜在的质量问题。还介绍了 Docker 容器化工具,通过定义应用的运行环境和依赖,确保环境一致性。最后,提及了线上诊断工具 Arthas 和性能调优工具 JProfiler,分别用于生产环境排障和性能优化。 适合人群:所有希望提高开发效率的程序员,尤其是有一定开发经验的软件工程师和技术团队。 使用场景及目标:①选择合适的 IDE 提升编码速度和代码质量;②利用 AI 编程助手加快开发进程;③通过 Git 实现高效的版本控制和团队协作;④使用 Postman 管理 API 的全生命周期;⑤借助 SonarQube 提高代码质量;⑥采用 Docker 实现环境一致性;⑦运用 Arthas 和 JProfiler 进行线上诊断和性能调优。 阅读建议:根据个人或团队的需求选择适合的工具,深入理解每种工具的功能特点,并在实际开发中不断实践和优化。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值