Space Elevator
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 10883 | Accepted: 5185 |
Description
The cows are going to space! They plan to achieve orbit by building a sort of space elevator: a giant tower of blocks. They have K (1 <= K <= 400) different types of blocks with which to build the tower. Each block of type i has height h_i (1 <= h_i <= 100) and is available in quantity c_i (1 <= c_i <= 10). Due to possible damage caused by cosmic rays, no part of a block of type i can exceed a maximum altitude a_i (1 <= a_i <= 40000).
Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.
Help the cows build the tallest space elevator possible by stacking blocks on top of each other according to the rules.
Input
* Line 1: A single integer, K
* Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.
* Lines 2..K+1: Each line contains three space-separated integers: h_i, a_i, and c_i. Line i+1 describes block type i.
Output
* Line 1: A single integer H, the maximum height of a tower that can be built
Sample Input
3 7 40 3 5 23 8 2 52 6
Sample Output
48
Hint
OUTPUT DETAILS:
From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.
From the bottom: 3 blocks of type 2, below 3 of type 1, below 6 of type 3. Stacking 4 blocks of type 2 and 3 of type 1 is not legal, since the top of the last type 1 block would exceed height 40.
Source
题意
给出了一些砖块
砖块有高度,最高可以达到的高度和数量
问最高可以摞多高的塔
解题思路
按照砖块最大高度排序
因为最大高度小的砖块先选肯定优于后选(贪心)
随后对于每个砖块做多重背包就可以了
注意的就是最后最大高度的dp[mh]不一定是最优解
因为这个dp[mh]的最值是从上一步过来的
而由于上一步dp的mh更小,因此dp数组存在断档
要最后从头扫一遍才能得出最优解
#include <iostream>
#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
const int MV=4e4+5;
const int MN=40005;
int dp[MV];
int vm;
struct Block
{
int h,mh,n;
bool operator<(Block a)const
{
return mh<a.mh;
}
}block[MN];
void _zop(int vi,int wi)//01背包子过程
{
for(int i=vm;i>=vi;i--)
dp[i]=max(dp[i],dp[i-vi]+wi);
}
void _cp(int vi,int wi)//完全背包子过程
{
for(int i=vi;i<=vm;i++)
dp[i]=max(dp[i],dp[i-vi]+wi);
}
void _mulp(int vi,int wi,int ni)//多重背包子过程
{
if(wi*ni>=vm)
{
_cp(vi,wi);
return;
}
int k=1;
while(k<ni)
{
_zop(vi*k,wi*k);
ni-=k;
k<<=1;
}
_zop(vi*ni,wi*ni);
}
int main()
{
int k;
scanf("%d",&k);
for(int i=0;i<k;i++)
scanf("%d%d%d",&block[i].h,&block[i].mh,&block[i].n);
sort(block,block+k);
memset(dp,0,sizeof(dp));
int ans=0;
for(int i=0;i<k;i++)
{
vm=block[i].mh;
_mulp(block[i].h,block[i].h,block[i].n);
//ans=max(ans,dp[vm]);
}
for(int i=0;i<=vm;i++)
ans=max(ans,dp[i]);
printf("%d\n",ans);
return 0;
}