feature agglomeration

本文展示了一种使用sklearn库进行手写数字图像特征聚类的方法。通过FeatureAgglomeration算法,将图像数据降维至32个特征,并保持了图像的原始形状,便于后续的可视化和进一步分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

from sklearn import cluster, datasets
from sklearn.feature_extraction.image import grid_to_graph

digit = datasets.load_digits()
images = digit.images
x = images.reshape((len(images), -1))
agg = cluster.FeatureAgglomeration(n_clusters=32, connectivity=grid_to_graph(*images[0].shape))
x_ = agg.fit_transform(x)
# print(x_.shape)
images_ = agg.inverse_transform(x_)
images_.shape = images.shape
# print(images_.shape)
# print(images_)

 

{ "name": "ImportError", "message": "cannot import name '_deprecate_Xt_in_inverse_transform' from 'sklearn.utils.deprecation' (c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\sklearn\\utils\\deprecation.py)", "stack": "--------------------------------------------------------------------------- ImportError Traceback (most recent call last) File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\app_pcg_ecg\\classify_BYSY.py:13 11 from sklearn.feature_selection import SelectFromModel 12 import os ---> 13 import shap 14 import warnings 15 warnings.filterwarnings('ignore') File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\shap\\__init__.py:4 1 from ._explanation import Cohorts, Explanation 3 # explainers ----> 4 from .explainers import other 5 from .explainers._additive import AdditiveExplainer 6 from .explainers._coalition import CoalitionExplainer File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\shap\\explainers\\__init__.py:5 3 from ._deep import DeepExplainer 4 from ._exact import ExactExplainer ----> 5 from ._gpu_tree import GPUTreeExplainer 6 from ._gradient import GradientExplainer 7 from ._kernel import KernelExplainer File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\shap\\explainers\\_gpu_tree.py:6 3 import numpy as np 5 from ..utils import assert_import, record_import_error ----> 6 from ._tree import ( 7 TreeExplainer, 8 _xgboost_cat_unsupported, 9 feature_perturbation_codes, 10 output_transform_codes, 11 ) 13 try: 14 from .. import _cext_gpu # type: ignore File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\shap\\explainers\\_tree.py:26 18 from ..utils import assert_import, record_import_error, safe_isinstance 19 from ..utils._exceptions import ( 20 DimensionError, 21 ExplainerError, (...) 24 InvalidModelError, 25 ) ---> 26 from ..utils._legacy import DenseData 27 from ..utils._warnings import ExperimentalWarning 28 from ._explainer import Explainer File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\shap\\utils\\_legacy.py:6 4 import pandas as pd 5 import scipy.sparse ----> 6 from sklearn.cluster import KMeans 7 from sklearn.impute import SimpleImputer 10 def kmeans(X, k, round_values=True): File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\sklearn\\cluster\\__init__.py:7 3 # Authors: The scikit-learn developers 4 # SPDX-License-Identifier: BSD-3-Clause 6 from ._affinity_propagation import AffinityPropagation, affinity_propagation ----> 7 from ._agglomerative import ( 8 AgglomerativeClustering, 9 FeatureAgglomeration, 10 linkage_tree, 11 ward_tree, 12 ) 13 from ._bicluster import SpectralBiclustering, SpectralCoclustering 14 from ._birch import Birch File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\sklearn\\cluster\\_agglomerative.py:44 42 # mypy error: Module 'sklearn.cluster' has no attribute '_hierarchical_fast' 43 from . import _hierarchical_fast as _hierarchical # type: ignore ---> 44 from ._feature_agglomeration import AgglomerationTransform 46 ############################################################################### 47 # For non fully-connected graphs 50 def _fix_connectivity(X, connectivity, affinity): File c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\sklearn\\cluster\\_feature_agglomeration.py:15 13 from ..base import TransformerMixin 14 from ..utils import metadata_routing ---> 15 from ..utils.deprecation import _deprecate_Xt_in_inverse_transform 16 from ..utils.validation import check_is_fitted, validate_data 18 ############################################################################### 19 # Mixin class for feature agglomeration. ImportError: cannot import name '_deprecate_Xt_in_inverse_transform' from 'sklearn.utils.deprecation' (c:\\Users\\13124\\Desktop\\pywave-c776783baf0cb360d8f0672824b14f78fd53ac71\\.venv\\lib\\site-packages\\sklearn\\utils\\deprecation.py)" }
最新发布
07-09
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值