多重背包的取模优化

本文介绍了一种名为“取模优化”的技术,它通过减少输入样本数量,将无论多么大的输入样本减少到50个以内,极大地减少了计算量,显著提高了运行效率。该方法基于“抽屉原理”,适用于解决特定类型的问题,如poj1014讨论中的实例。通过具体案例分析,展示了如何根据不同物品价值选择合适的替换法来满足条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

取模优化

当输入样本特别大时,比如给出上百万件物品,这时候仅靠优化算法仍然不能使运行时间降到满意的范围。可考虑如何减少输入样本。poj1014的discussion上有一个非常巧妙的“取模优化”法。

设价值为v(1<=v<=6)的物品共有n件,我们希望找到一个比较小的数s(s<n), 且将n件物品v减少到s或s-1件,问题的可分性不变。考虑不可分和可分两种情况:

  • 如果该问题不可分,那么n-2件v仍然不可分,依次类推,用s或 s-1替换n仍然不可分
  • 如果该问题可分,即可分成价值相等的两堆。分两种情况考虑:
  • 如果两堆里都有v。 两堆各减一个v,即n改为n-2,仍然可分,可以反复减2直至只有一堆有v。
  • 如果仅有一堆有v。 如果将n改为n-2仍可分,则必须满足两个条件: I.没有v的那一堆中,至少有一种其它物品可替换v。II.替换后两堆都至少有一个v。如果n>s时始终满足这两个条件,我们就可以用s或s-1替换n.

下面依次考虑v=1,2,3,4,5,6时如何根据“抽屉原理”得到满足条件I和II的s。

v=1时,s=6 替换法: if(n>6) n=6-n%2

1总能被其它价值替换,所以满足条件I不是问题,为满足条件2,s必须大于6。 因为6是其它价值物品中一次可替换最多1的物品。

v=2时,s=5 替换法: if(n>5) n=4+n%2

由1*(2-1)+3*(2-1)+4*(1-1)+5*(2-1)+6*(1-1) = 9 < 2*5知,s=4时满足条件I。但这里要注意,如果另一堆可替换2的是两个5,那么一次就可替换5个2。为满足条件 II,s不能小于5。所以这里s是5而不是4。

v=3时,s=8 替换法: if(n>8) n=8-n%2

由1*(3-1)+2*(3-1)+4*(3-1)+5*(3-1)+6*(1-1) = 24 < 3*9知,s=8时满足条件I,且最多可替换5个3,所以s=8>5也满足条件II。

v=4时,s=8 替换法: if(n>8) n=8-n%2

由1*(4-1)+2*(2-1)+3*(4-1)+5*(4-1)+6*(2-1) = 35 < 4*9知, s=8时满足条件I,且最多可替换5个4,所以s=8>5也满足条件II。

v=5时,s=12 替换法: if(n>12) n=12-n%2

由1*(5-1)+2*(5-1)+3*(5-1)+4*(5-1)+6*(5-1) = 64 < 5*13知,s=12满足条件I,且最多可替换6个5,所以s=12>6也满足条件II。

v=6时,s=7 替换法:if(n>7) n=6+n%2

由1*(6-1)+2*(3-1)+3*(2-1)+4*(3-1)+5*(6-1) = 45 < 6*8知,s=7满足条件I,且最多可替换5个6,所以s=7>5也满足条件II。

可以看出,“模优化”将无论多么大的输入样本减少到50个以内,极大地减少了计算量,从而显著提高运行效率。而“模优化”的关键就是“抽屉原理”。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值