7_22_F题 Recurrences(矩阵快速幂)
题意
当n > d 时有 f(n)=∑ni=1ai⋅f(n−i)
给出n,a1~ad,f[1]~f[n],求 f[n]%mod
思路
很明显的矩阵快速幂,转移矩阵如下
⎡⎣⎢⎢⎢⎢⎢⎢⎢a110⋮0a201⋮0⋯⋯⋯⋱⋯ad−100⋮1ad00⋮0⎤⎦⎥⎥⎥⎥⎥⎥⎥
然后直接矩阵快速幂就行了。
代码
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
const int maxn = 16;
typedef long long ll;
ll mod,d;
ll a[maxn];
ll f[maxn];
struct Mat {
ll maze[maxn][maxn];
Mat(){
memset(maze,0,sizeof maze);
}
};
int choose;
Mat Mat_mul(const Mat& a, const Mat& b){
Mat res;
for(int i = 0; i < d; i++)
for(int j = 0; j < d; j++){
res.maze[i][j] = 0;
for(int k = 0; k < d; k++) {
res.maze[i][j] = (res.maze[i][j] + (a.maze[i][k] * b.maze[k][j])%mod) % mod;
}
}
return res;
}
Mat Mat_Qpow(int n){
Mat base,res;
for(int i = 0 ; i < maxn ; i ++)
base.maze[0][i] = a[i]%mod;
for(int i = 1 ; i < maxn ; i ++)
base.maze[i][i-1] = 1;
for(int i = 0 ; i < maxn ; i ++)
res.maze[i][i] = 1;
while(n > 0){
if(n & 1) {
res = Mat_mul(res, base);
}
base = Mat_mul(base, base);
n >>= 1;
}
return res;
}
int main(){
ll n;
while(~scanf("%lld %lld %lld", &d, &n, &mod),mod){
memset(a,0,sizeof a);
for(int i = 0 ; i < d ; i ++)
scanf("%lld",a + i);
for(int i = 0 ; i < d ; i ++)
scanf("%lld",f + i);
auto ans= Mat_Qpow(n-d);
ll sum = 0;
for(int i = 0 ; i < d ; i ++)
sum = (sum + ans.maze[0][i]*f[d-i-1])%mod;
if(n <= d) sum = f[n-1]%mod;
printf("%lld\n", sum);
}
return 0;
}