Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note: The solution set must not contain duplicate triplets.
For example, given array S = [-1, 0, 1, 2, -1, -4],
A solution set is:
[
[-1, 0, 1],
[-1, -1, 2]
]
Code 1
#include <iostream>
#include <list>
#include <string>
#include <iterator>
#include <iomanip>
#include <utility>
#include <memory>
#include <iostream>
#include <vector>
#include <unordered_set>
#include <unordered_map>
#include <algorithm>
#include <vector>
using namespace std;
typedef unordered_set<int> intset;
typedef pair<int, int> piit;
typedef unordered_multimap<int/*2sum*/, piit> intmap;
typedef unordered_multiset<int> intmset;
class Solution {
public:
static
vector<vector<int>> threeSum(vector<int>& nums) {
vector<vector<int>> res;
if (nums.size() < 3) return res;
intmset mset;
for (auto i : nums)mset.insert(i);
/*special case */
vector<int> tmp(3,0);
{
auto resf = mset.equal_range(0);
int mc = 0;
for (auto it = resf.first; it != resf.second; ++it)mc++;
if (mc>=3)
res.push_back(tmp);
}
/**/
unordered_set<int> tset0, tset1;
for (auto i : nums){
if (i > 0)
tset1.insert(i);
else if(i!=0) tset0.insert(i);
}
vector<int> minusV(tset0.begin(), tset0.end()),
plusV(tset1.begin(), tset0.end());
for (int im = 0; im < minusV.size(); ++im) {
for (int ip = 0; ip < plusV.size(); ++ip) {
int t0 = 0 - minusV[im] - plusV[ip];
auto resf = mset.equal_range(t0);
tmp[0] = minusV[im];
tmp[1] = t0;
tmp[2] = plusV[ip];
int mc = 0;
for (auto it = resf.first; it != resf.second; ++it) {
mc++;
}
if (t0 == minusV[im] || t0 == plusV[ip]) {
if (mc >= 2)
res.push_back(tmp);
} else if (t0 > minusV[im] && t0 < plusV[ip]) {
if (mc >= 1)
res.push_back(tmp);
}
}
}
return res;
}// return
};
Code 2
vector<vector<int> > threeSum(vector<int> &num) {
vector<vector<int> > res;
std::sort(num.begin(), num.end());
for (int i = 0; i < num.size(); i++) {
int target = -num[i];
int front = i + 1;
int back = num.size() - 1;
while (front < back) {
int sum = num[front] + num[back];
// Finding answer which start from number num[i]
if (sum < target)
front++;
else if (sum > target)
back--;
else {
vector<int> triplet(3, 0);
triplet[0] = num[i];
triplet[1] = num[front];
triplet[2] = num[back];
res.push_back(triplet);
// Processing duplicates of Number 2
// Rolling the front pointer to the next different number forwards
while (front < back && num[front] == triplet[1]) front++;
// Processing duplicates of Number 3
// Rolling the back pointer to the next different number backwards
while (front < back && num[back] == triplet[2]) rear--;
}
}
// Processing duplicates of Number 1
while (i + 1 < num.size() && num[i + 1] == num[i])
i++;
}
return res;
}