YOLOv8旋转目标检测实战:训练自己的数据集

本文介绍了如何使用YOLOv8进行旋转目标检测,包括在X-AnyLabeling上手动和自动标注、数据集准备、模型微调等步骤,以及YOLOv8的原理和关键技术。课程覆盖Windows和Ubuntu系统实战演示及关键概念解析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

课程链接:https://edu.youkuaiyun.com/course/detail/39393

旋转目标检测是计算机视觉领域的一个高级任务,它在传统目标检测的基础上进一步发展。传统目标检测技术主要关注于识别和定位图像中的物体,通常以水平边界框(HBB)来标识目标物体的位置。而旋转目标检测则旨在识别并准确定位图像中旋转的物体,为每个检测到的物体提供一个旋转边界框(OBB),这种边界框能够更紧密地贴合目标物体的实际形状和朝向。

YOLOv8 基于先前 YOLO 版本的成功,引入了新功能和改进,进一步提升性能和灵活性。YOLOv8支持旋转目标检测任务。

本课程以船舶旋转目标检测为例,将手把手地教大家使用X-AnyLabeling手动和自动标注图像中物体的旋转框,并使用YOLOv8利用DOTA OBB数据集上的预训练权重在自己的数据集微调训练,完成一个旋转目标检测实战项目。  

本课程分别在Windows和Ubuntu系统上做项目实战演示。

包括:安装软件环境、安装PyTorch、安装YOLOv8、标注自己的数据集、准备自己的数据集、修改配置文件、训练自己的数据集、测试训练出的网络模型和性能统计。 

本课程还讲解了YOLOv8旋转目标检测的原理,包括高斯边界框和概率交并比、损失函数, 并对YOLOv8 OBB相关的代码进行了解析。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

bai666ai

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值