Given an array S of n integers, are there elements a, b, c in S such that a + b + c = 0? Find all unique triplets in the array which gives the sum of zero.
Note:
- Elements in a triplet (a,b,c) must be in non-descending order. (ie, a ≤ b ≤ c)
- The solution set must not contain duplicate triplets.
For example, given array S = {-1 0 1 2 -1 -4}, A solution set is: (-1, 0, 1) (-1, -1, 2)
思路:思路简单,注意重复项的处理
//超时
vector<vector<int> > threeSum(vector<int> &num) {
vector<vector<int> > ResultVector;
vector<int> VectorOne;
sort(num.begin(), num.end());
for (int first = 0; first != num.size(); ++first){
if (num[first] > 0)
break;
for (int second = first + 1; second < num.size(); ++second){
for (int third = second + 1; third < num.size(); ++third){
int sum = num[first] + num[second] + num[third];
if (sum == 0)
{
VectorOne.push_back(num[first]);
VectorOne.push_back(num[second]);
VectorOne.push_back(num[third]);
ResultVector.push_back(VectorOne);
VectorOne.clear();
}
}
}
}
sort(ResultVector.begin(), ResultVector.end(), less<vector<int> >());
vector<vector<int> >::iterator new_end = unique(ResultVector.begin(), ResultVector.end());
ResultVector.erase(new_end, ResultVector.end());
return ResultVector;
}
//AC
vector<vector<int> > threeSum(vector<int> &num) {
vector<vector<int> > ResultVector;
vector<int> VectorOne;
sort(num.begin(), num.end());
if (num.size()<3)
return ResultVector;
for (int first = 0; first <= num.size() - 3; ++first){
if (num[first] > 0)
break;
if (first != 0 && num[first] == num[first - 1])
continue;
int second = first + 1;
int third = num.size() - 1;
while (second < third)
{
int sum = num[first] + num[second] + num[third];
if (sum == 0)
{
VectorOne.push_back(num[first]);
VectorOne.push_back(num[second]);
VectorOne.push_back(num[third]);
ResultVector.push_back(VectorOne);
VectorOne.clear();
second++;
third--;
while (second < third&&num[second] == num[second - 1])
second++;
while (second < third&&num[third] == num[third + 1])
third--;
}
else if (sum > 0)
third--;
else
second++;
}
}
return ResultVector;
}