什么是前缀表
写过KMP的同学,一定都写过next数组,那么这个next数组究竟是个啥呢?
next数组就是一个前缀表(prefix table)。
前缀表有什么作用呢?
前缀表是用来回退的,它记录了模式串与主串(文本串)不匹配的时候,模式串应该从哪里开始重新匹配。
为了清楚地了解前缀表的来历,我们来举一个例子:
要在文本串:什么是前缀表
写过KMP的同学,一定都写过next数组,那么这个next数组究竟是个啥呢?
next数组就是一个前缀表(prefix table)。
前缀表有什么作用呢?
首先要知道前缀表的任务是当前位置匹配失败,找到之前已经匹配上的位置,再重新匹配,此也意味着在某个字符失配时,前缀表会告诉你下一步匹配中,模式串应该跳到哪个位置
那么什么是前缀表:记录下标i之前(包括i)的字符串中,有多大长度的相同前缀后缀。
为了清楚地了解前缀表的来历,我们来举一个例子:
要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。
请记住文本串和模式串的作用,对于理解下文很重要,要不然容易看懵。
要在文本串:aabaabaafa 中查找是否出现过一个模式串:aabaaf。
最长相等前后缀
前缀是指不包含最后一个字符的所有以第一个字符开头的连续子串。
后缀是指不包含第一个字符的所有以最后一个字符结尾的连续子串。
前缀表要求的就是相同前后缀的长度。
前缀表
找到的不匹配的位置, 那么此时我们要看它的前一个字符的前缀表的数值是多少。
为什么要前一个字符的前缀表的数值呢,因为要找前面字符串的最长相同的前缀和后缀。
所以要看前一位的 前缀表的数值。
前一个字符的前缀表的数值是2, 所以把下标移动到下标2的位置继续比配。 可以再反复看一下上面的动画。
最后就在文本串中找到了和模式串匹配的子串了
next数组
很多KMP算法的实现都是使用next数组来做回退操作,那么next数组与前缀表有什么关系呢?
next数组就可以是前缀表,但是很多实现都是把前缀表统一减一(右移一位,初始位置为-1)之后作为next数组。
为什么这么做呢,其实也是很多文章视频没有解释清楚的地方。
其实这并不涉及到KMP的原理,而是具体实现,next数组既可以就是前缀表,也可以是前缀表统一减一(右移一位,初始位置为-1)。
代码实现
-1
构造next数组其实就是计算模式串s,前缀表的过程。主要有如下三步:
1. 初始化
2. 处理前后缀不相同的情况
3. 处理前后缀相同的情况
初始化:
定义两个指针i和j,j指向前缀末尾位置,i指向后缀末尾位置。
int j=-1;
next[0]=j;
j 为什么要初始化为 -1呢,因为之前说过 前缀表要统一减一的操作仅仅是其中的一种实现,我们这里选择j初始化为-1
next[i] 表示 i(包括i)之前最长相等的前后缀长度(其实就是j)
所以初始化next[0] = j 。
处理前后缀不相同的情况
因为j初始化为-1,那么i就从1开始,进行s[i] 与 s[j+1]的比较。
所以遍历模式串s的循环下标i 要从 1开始,代码如下:
for (int i = 1; i < s.size(); i++) {
如果 s[i] 与 s[j+1]不相同,也就是遇到 前后缀末尾不相同的情况,就要向前回退。
怎么回退呢?
next[j]就是记录着j(包括j)之前的子串的相同前后缀的长度。
那么 s[i] 与 s[j+1] 不相同,就要找 j+1前一个元素在next数组里的值(就是next[j])。
所以,处理前后缀不相同的情况代码如下:
while (j >= 0 && s[i] != s[j + 1]) { // 前后缀不相同了
j = next[j]; // 向前回退
}
处理前后缀相同的情况
如果 s[i] 与 s[j + 1] 相同,那么就同时向后移动i 和j 说明找到了相同的前后缀,同时还要将j(前缀的长度)赋给next[i], 因为next[i]要记录相同前后缀的长度。
代码如下:
void getNext(int* next, const string& s) {
int j = -1;
next[0] = j;
for(int i = 1; i < s.size(); i++) {
if (s[i] == s[j + 1]) {
j++;
}
while (j >= 0 && s[i] != s[j + 1]) {
j = next[j];
}
next[i] = j;
}
}
使用next数组来做匹配
在文本串s里 找是否出现过模式串t。
定义两个下标j 指向模式串起始位置,i指向文本串起始位置。
那么j初始值依然为-1,为什么呢? **依然因为next数组里记录的起始位置为-1。**
i就从0开始,遍历文本串,代码如下:
for (int i = 0; i < s.size(); i++)
接下来就是 `s[i]`与 `t[j + 1]` (因为j从-1开始的) 进行比较。
如果 `s[i]` 与 `t[j + 1]` 不相同,j就要从next数组里寻找下一个匹配的位置。
代码如下:
// 当前字符不匹配时,通过next数组调整j的位置
while (j >= 0 && s[i] != t[j + 1]) {
j = next[j];
}
如果 s[i] 与 t[j + 1] 相同,那么i 和 j 同时向后移动, 代码如下:
// 字符匹配时,移动模式串指针
if (s[i] == t[j + 1]) {
j++;
}
如何判断在文本串s里出现了模式串t呢,如果j指向了模式串t的末尾,那么就说明模式串t完全匹配文本串s里的某个子串了。
本题要在文本串字符串中找出模式串出现的第一个位置 (从0开始),所以返回当前在文本串匹配模式串的位置i 减去 模式串的长度,就是文本串字符串中出现模式串的第一个位置。
代码如下:
if (j == (t.size() - 1)) {
return (i - t.size() + 1);
}
- 条件判断:检查变量
j
是否等于t.size() - 1
,即是否到达目标字符串t
的末尾。 - 返回值:若条件成立,返回
i - t.size() + 1
,表示在主字符串中找到了完整匹配的子串起始位置。
前缀表数值
此时如果输入的模式串为aabaaf,对应的next为 0 1 0 1 2 0,(其实这就是前缀表的数值了)。
那么用这样的next数组也可以用来做匹配,代码要有所改动。
实现代码如下:
void getNext(int* next, const string& s) {
int j = 0;
next[0] = 0;
for(int i = 1; i < s.size(); i++) {
while (j > 0 && s[i] != s[j]) {
j = next[j - 1];
}
if (s[i] == s[j]) {
j++;
}
next[i] = j;
}
}
getNext
函数用于生成部分匹配表(next数组),记录模式串needle
的前缀和后缀的最长公共长度。j
表示前缀末尾位置,i
表示后缀末尾位置,通过比较s[i]
和s[j]
来更新next
数组。
int strStr(string haystack, string needle) {
if (needle.size() == 0) {
return 0;
}
vector<int> next(needle.size());
getNext(&next[0], needle);
int j = 0;
for (int i = 0; i < haystack.size(); i++) {
while(j > 0 && haystack[i] != needle[j]) {
j = next[j - 1];
}
if (haystack[i] == needle[j]) {
j++;
}
if (j == needle.size()) {
return (i - needle.size() + 1);
}
}
return -1;
}
strStr
函数利用next
数组进行高效匹配,当匹配失败时通过next
数组跳过不必要的比较。- 当
j
达到needle.size()
时,返回匹配的起始位置;否则返回-1
表示未找到。