nodejs学习(二)

一.建立 HTTP 服务器

前面的 Hello World 程序对于你来说可能太简单了,因为这个例子几乎可以在任何语言的教科书上找到对应的内容,既无聊又乏味,让我们来点儿不一样的东西,真正感受一下Node.js 的魅力所在吧。Node.js 是为网络而诞生的平台,但又与 ASP、PHP 有很大的不同,究竟不同在哪里呢?如果你有 PHP 开发经验,会知道在成功运行 PHP 之前先要配置一个功能强大而复杂的 HTTP服务器,譬如 Apache、IIS 或 Nginx,还需要将 PHP 配置为 HTTP 服务器的模块,或者使用FastCGI 协议调用 PHP 解释器。这种架构是“浏览器  HTTP 服务器  PHP 解释器”的组织方式,而Node.js采用了一种不同的组织方式,如图3-1 所示。我们看到,Node.js 将“HTTP服务器”这一层抽离,直接面向浏览器用户。这种架构从某种意义上来说是颠覆性的,因而会让人心存疑虑:Node.js作为HTTP服务器的效率足够吗?会不会提高耦合程度?我们不打算在这里讨论这种架构的利弊,后面章节会继续说明。


让我们创建一个 HTTP 服务器吧。建立一个名为 app.js 的文件,内容为:

var http = require('http');
http.createServer(function(req, res) {
res.writeHead(200, {'Content-Type': 'text/html'});
res.write('<h1>Node.js</h1>');
res.end('<p>Hello World</p>');
}).listen(3000);
console.log("HTTP server is listening at port 3000.");

接下来运行 node app.js命令,打开浏览器访问 http://127.0.0.1:3000,即可看到效果。

用 Node.js 实现的最简单的 HTTP 服务器就这样诞生了。这个程序调用了 Node.js 提供的http 模块,对所有 HTTP 请求答复同样的内容并监听 3000 端口。在终端中运行这个脚本
时,我们会发现它并不像 Hello World 一样结束后立即退出,而是一直等待,直到按下 Ctrl +C 才会结束。这是因为 listen 函数中创建了事件监听器,使得 Node.js 进程不会退出事件循环。我们会在后面的章节中详细介绍这其中的奥秘


使用技巧:

有时候我们可能想修改完内容刷新页面想看到效果,无论你修改了代码的哪一部份,都必须终止Node.js 再重新运行才会奏效。这是因为 Node.js 只有在第一次引用到某部份时才会去解析脚本文件,以后都会直接访问内存,避免重复载入,这时候supervisor 可以帮助你实现这个功能,它会监视你对代码的改动,并自动重启 Node.js。使用方法很简单,首先使用 npm 安装 supervisor:

$ npm install -g supervisor

如果你使用的是 Linux 或 Mac,直接键入上面的命令很可能会有权限错误。原因是 npm需要把 supervisor 安装到系统目录,需要管理员授权,可以使用 sudo npm install -g supervisor 命令来安装。接下来,使用 supervisor 命令启动 app.js:

$ supervisor app.js

当代码被改动时,运行的脚本会被终止,然后重新启动

内容概要:本文深入探讨了DevOps流程落地中自动化测试与监控体系的构建,强调者是保障软件质量和系统稳定性的重要支柱。自动化测试涵盖从单元测试到端到端测试的全流程自动化,而监控体系则通过实时采集和分析系统数据,及时发现并解决问题。文章介绍了测试金字塔模型的应用、监控指标的分层设计、测试与生产环境的一致性构建以及告警策略的精细化设置等核心技巧。此外,还提供了基于Python和Prometheus的具体代码案例,包括自动化接口测试脚本和监控指标暴露的实现,展示了如何在实际项目中应用这些技术和方法。 适合人群:对DevOps有一定了解,从事软件开发、运维或测试工作的技术人员,特别是那些希望提升自动化测试和监控能力的从业者。 使用场景及目标:①高并发业务系统中,模拟大规模用户请求,验证系统抗压能力和稳定性;②关键业务流程保障,确保金融交易、医疗数据处理等敏感业务的合规性和可追溯性;③微服务架构系统下,通过契约测试和分布式链路追踪,保证服务间的兼容性和故障快速定位。 阅读建议:本文不仅提供了理论指导,还有详细的代码示例,建议读者结合自身项目的实际情况,逐步实践文中提到的技术和方法,特别是在构建自动化测试框架和监控系统时,关注环境一致性、测试覆盖率和性能指标等方面。
内容概要:该论文针对电熔镁砂熔炼过程的强非线性特性,提出了一种带输出补偿的PID控制方法。电熔镁炉以三相电机转动方向和频率为输入,三相电极电流为输出,模型参数如埋弧电阻率、熔池电阻率和高度会随熔炼过程变化。作者采用线性模型加未知高阶非线性项描述系统,设计了消除非线性项及其变化率的补偿器,结合一步最优前馈控制律和调节律确定PID参数。仿真和工业应用表明,该方法能在动态特性随机变化时,将电流跟踪误差控制在目标范围内。论文还详细介绍了控制器的设计、实现及仿真验证过程,包括非线性补偿、抗积分饱和、自适应补偿增益等改进措施,以及工业应用中的关键技术如参数辨识、安全保护机制等。 适用人群:具备一定自动化控制理论基础,从事工业控制系统设计与优化的研发人员和工程师。 使用场景及目标:①解决电熔镁砂熔炼过程中由于参数时变和非线性带来的控制难题;②提高电流控制精度,降低单吨能耗,提升生产效率和产品质量稳定性;③适用于类似强非线性、时变特性的工业过程控制领域。 其他说明:该控制方法通过系统性的非线性补偿设计和在线参数调整,相比传统PID控制,能显著降低电流跟踪误差,减少能耗。实际应用中需根据具体电熔镁炉特性调整模型参数和补偿系数,确保控制性能最优。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值