Given a non-empty integer array, find the minimum number of moves required to make all array elements equal, where a move is incrementing a selected element by 1 or decrementing a selected element by 1.
You may assume the array's length is at most 10,000.
Example:
Input: [1,2,3] Output: 2 Explanation: Only two moves are needed (remember each move increments or decrements one element): [1,2,3] => [2,2,3] => [2,2,2]
这道题跟1的思路有点像,要寻找最后所有数字都是一样的那个数字N。 为了移动的次数最小,显然应该是中位数。刚刚纠结了下如果是奇数该怎么办。但是又一想,无论是以左边还是右边为基础, 移动的次数一定是相同的。感觉需要回小学再补习一下数学。。
那么有这个规律了,代码实现就很简单了。
代码:
public int minMoves2(int[] nums) {
//与中位数的差的绝对值的和
if(nums == null || nums.length ==0) return 0;
Arrays.sort(nums);
int median = nums[nums.length/2];
int sum = 0;
for(int i=0;i<nums.length;i++){
sum += Math.abs(nums[i] - median);
}
return sum;
}