RS-NMC-1

Course Length : 5 days
Instructors Available : 55 hours

     8:30am - 8:00pm Monday through Thursday, 8:30am - 4:30pm on Friday
Facility Available : 80 hours
     7:00am - 12:00am Monday through Thursday, 7:00am - 7:00pm on Friday
Location : Herndon Office
Schedule

Price : $3995.00

 

This intensive course is designed to expedite the CCIE® preparation by helping the candidate determine exactly where he is in the roadmap to CCIE® success and to fill technology gaps through lecture. The class is approximately 60% lecture and 40% hands-on equipment. Upon completion of the technology lecture that includes best practices for applying the technology, the candidate completes labs based on that technology. The class culminates with the completion of an eight-hour graded CheckiT lab that combines all the technologies. Additionally, the candidate is schooled in how to develop study plans, how to develop and use checklists and decision diagrams to formulate the mindset needed to pass the CCIE® lab. With this information stored in the candidate's on-line portal, he can review the material covered in the RS-NMC-1 class as frequently as he wishes. The RS-NMC-1 class is recommended for all candidates.

The perquisite for RS-NMC-1 is completion of the CCIE® written exam. NetMasterClass recommends that students take this class three to six months prior to actual CCIE® lab exam.


NetMasterClass offers you the best CCIE® preparation resources:
NMC Instructors and Equipment
Bruce Caslow and Val Pavlichenko, along with Bob Sinclair deliver every class. Limited to seven students with each student having his own pod of equipment that includes only 3640 and 2621 routers. No other CCIE® preparation course in the world has this instructor to student ratio, this caliber of instructors, this equipment layout and these course materials. [>>]
 
Publications
POD Specification
POD Layout


 
Tech Library
Since the exam requires a comprehensive understanding of using Cisco equipment to fulfill complex internetworking tasks, the candidate must have a through understanding of the technologies and how to implement those technologies on Cisco equipment – thus the hands-on skills based CCIE® lab exam. This cannot be accomplished though memorization of Cisco commands or having a vague understanding of the technology. The NetMasterClass approach allows the candidate to master both the technology knowledge and application knowledge to actually configure Cisco equipment. To do this, the student has nine months access to the Technical Library. The Technical Library contains all the materials used in the class plus much more. [>>]

SHOWiT
The SHOWiT technology allows you to query all RS-NMC-1 exercise answer key via a web based interface using well known IOS commands as well as proprietary NMC show commands. Having access to SHOWiT is like have access to a pod with the final configuration of a given exercise completed for you. With SHOWiT you can now query the final configurations on each router and switch as well as view the many IOS show command displays that are generated as a result of the correct final configuration. [>>]
 


 
CHECKiT
CHECKiT technology is used in RS-NMC-1 as a concluding assessment at the end of the course. Not only does CHECKiT technology provide you with an assessment, it provides you will voluminous feedback as well.
Each CHECKiT lab, including the CHECKiT lab integrated into RS-NMC-1, contains an extensive report on how the student did on the lab, a detailed Spot the Issues Answer Key that includes several detailed diagrams, and the NMC SHOWiT engine to provide an interactive answer key. When the SHOWiT engine is applied to CHECKiT output, it allows you to compare your configuration results with the Exam's Master Answer Key's configuration results. [>>]

RoadMap
The RS-NMC-1 lectures and labs used in class track to the roadmap students should follow to master the information required to pass the CCIE® exam. This roadmap divides the range of topics that can be encountered in the CCIE® lab into three categories. Not only do these three categories divide all possible CCIE® exam topics into more digestible "chunks", the three categories provide a framework for a sensible and incremental "three phase preparation approach" to successfully pass the CCIE® lab. Thus after you leave the class you will know what to do next. [>>]
 
DOiT
DOiT is the latest of a range of offerings from NetMasterClass to help CCIE® candidates prepare for the lab. It is a goal of NetMasterClass to provide the CCIE® candidate with a complete "end to end" suite of products and services. RS-NMC-1 students get on-line access to the workbook for 9 months free of charge to perform as many well thought out hands on scenarios as possible before the exam. [>>]

Web Portal
Every RS-NMC-1 student has access to the NMC Web-Portal. Once you are logged into the NMC Web Portal, you have access to many resources including: Electronic Access to DOiT Scenarios and Answer Keys, Easy Access to the SHOWiT engine for DOiT Scenarios and for your RS-NMC-1 answer keys, The NMC Technical Library with Decision-Diagrams & Checklists, Self-Assessment Roadmap/Matrix and Personal Profiles, On-line Spot the Issues Quizzes, The benefit of the NMC Web Portal is that you have remote web-based access to all NMC learning products from a web-accessible interface. [>>]
(期末课程设计 基于VPI或matlab仿真软件实现单偏振 28GBaudQPSK信号传输2000km; 1.基于matlab实现色散补偿算法、教波相 位恢复算法:直接运行的模型代码(必须 含注释) 2.传输系统:单跨80km、EDFA噪声指数 5dB.)帮我完成这个课程设计,目前已有代码,请帮我看看有没有什么问题,哪里需要改成等等(%% ============================================================= % 期末课程设计(最终整合版,可直接运行,单文件提交) % 单偏振 28 Gbaud QPSK 信号传输 2000 km(25×80 km) % % 要求: % 1) MATLAB 实现色散补偿算法(EDC)+ 载波相位恢复算法(V&V) % 2) 传输系统:单跨 80 km,EDFA 噪声指数 NF=5 dB % % 本代码包含: % Tx: QPSK(Gray) + RRC 成形 + 激光相位噪声(线宽 linewidth) % Link: 25×80 km SMF 色散 + 损耗 + EDFA补偿 + ASE噪声 % Rx: 频域色散补偿(EDC) + RRC 匹配滤波 + 理想抽样 % CPR: Viterbi&Viterbi (QPSK): 四次方 + unwrap + 平滑 + 去π/4偏置 % QPSK π/2 相位模糊:仿真中用“已知比特”选最优旋转(等效导频) % % 额外:可选 sweep(linewidth/NF)+ MonteCarlo + BER=0 的 UB95 输出 % ============================================================= clear; clc; close all; rng(1); %% --------------------- 开关区(按需改) --------------------- doPlots_singlePoint = true; % 是否画“单点仿真”的星座/相位图 plot_noCD_constellation = true; % 是否画“未做CD补偿”的星座图(建议保留) doSweep_linewidth = true; % 是否扫 linewidth doSweep_NF = true; % 是否扫 NF Nmc_sweep = 10; % sweep 时每个点做 Monte Carlo 次数(建议 >=5) %% --------------------- 系统参数 ----------------------------- Rs = 28e9; % 符号率 28 Gbaud sps = 8; % 每符号采样数 Fs = Rs*sps; % 采样率 Ts = 1/Fs; Nsym_single = 2^17; % 单点仿真符号数 Nsym_sweep = 2^15; % sweep 时每次仿真符号数(为加速) % RRC 滤波(成形/匹配) rolloff = 0.2; span_sym = 6; rrc = rcosdesign(rolloff, span_sym, sps, 'sqrt'); rrc = rrc / sqrt(sum(rrc.^2)); % 单位能量归一化 rrcDelay = (length(rrc)-1)/2; % 群时延(采样) %% --------------------- 光纤参数(只考虑线性:色散+损耗) ------- lambda = 1550e-9; c = 3e8; D_ps_nm_km = 16; % 典型 SMF D_SI = D_ps_nm_km * 1e-12 / (1e-9*1e3); % s/m^2 beta2 = -(D_SI*lambda^2)/(2*pi*c); % s^2/m L_span_km = 80; L_span = L_span_km*1e3; N_span = 2000 / L_span_km; % 25 跨 L_total = L_span*N_span; alpha_dB_km = 0.2; % dB/km(常见) lossSpan_dB = alpha_dB_km * L_span_km; A_field = 10^(-lossSpan_dB/20); % 场衰减 G_span_dB = lossSpan_dB; % EDFA 每跨补偿损耗 G_span = 10^(G_span_dB/10); %% --------------------- 噪声(ASE)相关 ----------------------- h = 6.626e-34; nu = c/lambda; % 课程要求:NF=5 dB(单点仿真固定用它;sweep 时会变) NF0_dB = 5; %% --------------------- 单点仿真参数 -------------------------- linewidth0 = 10e3; % 10 kHz NF_dB0 = NF0_dB; % V&V 平滑窗口:可“固定”也可“随 linewidth 自适应” useAutoM = true; % linewidth 提高时自动减小窗口,避免跟踪不动 M_fixed = 501; % 不自适应时用这个 % 自适应窗口范围(防止过大/过小) M_min = 51; M_max = 2001; %% ============================================================= % 单点仿真(用于展示:星座图/相位图/打印结果) %% ============================================================= fprintf('\n=========== 单点仿真(用于画图/展示) ===========\n'); [ber0, numErr0, ub95_0, bestK0, M_used0, dbg0] = simulate_once( ... Rs, sps, Fs, Ts, Nsym_single, rrc, rrcDelay, ... beta2, L_span, N_span, A_field, G_span, ... h, nu, linewidth0, NF_dB0, ... useAutoM, M_fixed, M_min, M_max, ... doPlots_singlePoint, plot_noCD_constellation); fprintf('---------------- 仿真结果 ----------------\n'); fprintf('传输距离:%.0f km (%d × %.0f km)\n', L_total/1e3, N_span, L_span_km); fprintf('QPSK 符号数:%d\n', Nsym_single); fprintf('激光线宽:%.1f kHz\n', linewidth0/1e3); fprintf('EDFA NF:%.1f dB\n', NF_dB0); fprintf('V&V 窗口 M=%d(useAutoM=%d)\n', M_used0, useAutoM); fprintf('相位模糊旋转:k=%d (%d°)\n', bestK0, bestK0*90); fprintf('误比特数:%d\n', numErr0); if numErr0==0 fprintf('BER ≈ 0.000e+00(若为0,看 95%%上界 UB95≈%.3e)\n', ub95_0); else fprintf('BER ≈ %.3e\n', ber0); end fprintf('【单点】err=%d, BER=%.3e, UB95=%.3e, bitsUsed=%d\n', ... numErr0, ber0, ub95_0, dbg0.bitsPerRun); %% ============================================================= % 扫 linewidth(固定 NF=5 dB) %% ============================================================= if doSweep_linewidth fprintf('\n=========== 扫 linewidth(固定 NF=%.1f dB, Nmc=%d) ===========\n', NF0_dB, Nmc_sweep); linewidth_list = [ ... 1e3 2e3 5e3 10e3 20e3 50e3 100e3 200e3 500e3 1e6 ]; % Hz ber_lw = zeros(size(linewidth_list)); ub95_lw = zeros(size(linewidth_list)); for i = 1:numel(linewidth_list) lw = linewidth_list(i); totalErr = 0; totalBits = 0; for mc = 1:Nmc_sweep [~, err_i, ~, ~, ~, dbg_i] = simulate_once( ... Rs, sps, Fs, Ts, Nsym_sweep, rrc, rrcDelay, ... beta2, L_span, N_span, A_field, G_span, ... h, nu, lw, NF0_dB, ... useAutoM, M_fixed, M_min, M_max, ... false, false); totalErr = totalErr + err_i; totalBits = totalBits + dbg_i.bitsPerRun; end if totalErr == 0 ber_lw(i) = 0; ub95_lw(i) = -log(0.05) / totalBits; else ber_lw(i) = totalErr / totalBits; ub95_lw(i) = ber_lw(i); end fprintf('lw=%7.1f kHz | totalErr=%6d | totalBits=%d | BER=%.3e | UB95=%.3e\n', ... lw/1e3, totalErr, totalBits, ber_lw(i), ub95_lw(i)); end figure; semilogy(linewidth_list/1e3, max(ub95_lw, 1e-12), '-o'); grid on; xlabel('Laser linewidth (kHz)'); ylabel('BER (0 -> UB95)'); title(sprintf('BER vs Linewidth (NF=%.1f dB, Nsym=%d, Nmc=%d)', NF0_dB, Nsym_sweep, Nmc_sweep)); end %% ============================================================= % 扫 NF(固定 linewidth=10 kHz) %% ============================================================= if doSweep_NF fprintf('\n=========== 扫 NF(固定 linewidth=%.1f kHz, Nmc=%d) ===========\n', linewidth0/1e3, Nmc_sweep); NF_list = 3:1:15; ber_nf = zeros(size(NF_list)); ub95_nf = zeros(size(NF_list)); for i = 1:numel(NF_list) NF_dB = NF_list(i); totalErr = 0; totalBits = 0; for mc = 1:Nmc_sweep [~, err_i, ~, ~, ~, dbg_i] = simulate_once( ... Rs, sps, Fs, Ts, Nsym_sweep, rrc, rrcDelay, ... beta2, L_span, N_span, A_field, G_span, ... h, nu, linewidth0, NF_dB, ... useAutoM, M_fixed, M_min, M_max, ... false, false); totalErr = totalErr + err_i; totalBits = totalBits + dbg_i.bitsPerRun; end if totalErr == 0 ber_nf(i) = 0; ub95_nf(i) = -log(0.05) / totalBits; else ber_nf(i) = totalErr / totalBits; ub95_nf(i) = ber_nf(i); end fprintf('NF=%4.1f dB | totalErr=%6d | totalBits=%d | BER=%.3e | UB95=%.3e\n', ... NF_dB, totalErr, totalBits, ber_nf(i), ub95_nf(i)); end figure; semilogy(NF_list, max(ub95_nf, 1e-12), '-o'); grid on; xlabel('EDFA Noise Figure NF (dB)'); ylabel('BER (0 -> UB95)'); title(sprintf('BER vs NF (linewidth=%.1f kHz, Nsym=%d, Nmc=%d)', linewidth0/1e3, Nsym_sweep, Nmc_sweep)); end %% ============================================================= % 子函数:单次仿真(写在同一个脚本末尾,便于“单文件提交”) %% ============================================================= function [ber, numErr, ub95, bestK, M_used, dbg] = simulate_once( ... Rs, sps, Fs, Ts, Nsym, rrc, rrcDelay, ... beta2, L_span, N_span, A_field, G_span, ... h, nu, linewidth, NF_dB, ... useAutoM, M_fixed, M_min, M_max, ... doPlots, plotNoCD) %% ---------- EDFA ASE ---------- NF = 10^(NF_dB/10); n_sp = NF/2; % 常用近似:NF ≈ 2*nsp S_ASE = n_sp*h*nu*(G_span-1); % 单偏振、单边 PSD (W/Hz) %% ---------- 生成 QPSK ---------- bits = randi([0 1], 2*Nsym, 1); bitI = bits(1:2:end); bitQ = bits(2:2:end); txSym = ((1-2*bitI) + 1j*(1-2*bitQ))/sqrt(2); % Gray(I/Q独立映射) txWave = upfirdn(txSym, rrc, sps, 1); txWave = txWave(:); txWave = txWave / rms(txWave); %% ---------- 激光相位噪声(Wiener 过程) ---------- phi = sqrt(2*pi*linewidth*Ts) * cumsum(randn(size(txWave))); txWave = txWave .* exp(1j*phi); %% ---------- 频率轴 ---------- N = length(txWave); df = Fs/N; f = (-N/2:N/2-1).' * df; %% ---------- 单跨色散 ---------- H_cd_span = exp(-1j*2*pi^2*beta2*L_span*(f.^2)); % 噪声离散化:对每个频点(带宽 df)加入复高斯噪声 % 若 PSD 为单边 S_ASE,则离散到每个 FFT bin 的功率 ~ S_ASE * df noiseVar = S_ASE * df; % 复噪声功率 E{|n|^2} noiseStd = sqrt(noiseVar/2); % 每个实/虚分量方差 = noiseVar/2 %% ---------- 链路:N_span 跨 ---------- rxWave = txWave; for n = 1:N_span RX = fftshift(fft(rxWave)); RX = RX .* H_cd_span; rxWave = ifft(ifftshift(RX)); rxWave = rxWave * A_field; rxWave = rxWave * sqrt(G_span); rxWave = rxWave + noiseStd*(randn(size(rxWave))+1j*randn(size(rxWave))); end %% ---------- EDC(频域色散补偿) ---------- L_total = L_span*N_span; H_cd_total = exp(-1j*2*pi^2*beta2*L_total*(f.^2)); H_eq = conj(H_cd_total); RX = fftshift(fft(rxWave)); rxWave_cd = ifft(ifftshift(RX .* H_eq)); %% ---------- 匹配滤波 + 抽样 ---------- rxMF_cd = upfirdn(rxWave_cd, rrc, 1, 1); rxMF_cd = rxMF_cd / rms(rxMF_cd); if plotNoCD rxMF_noCD = upfirdn(rxWave, rrc, 1, 1); rxMF_noCD = rxMF_noCD / rms(rxMF_noCD); end startIdx = 2*rrcDelay + 1; idx = startIdx : sps : (startIdx + (Nsym-1)*sps); if idx(end) > length(rxMF_cd) error('接收波形长度不足:请减小 Nsym 或增加零填充。'); end rxSym = rxMF_cd(idx); if plotNoCD if idx(end) > length(rxMF_noCD) error('接收波形长度不足(noCD):请减小 Nsym 或增加零填充。'); end rxSym_noCD = rxMF_noCD(idx); end %% ---------- V&V CPR ---------- if useAutoM % 经验规则:linewidth 越大 -> M 越小(跟踪更快) K = 50; % K 越大 -> M 越小 M_used = round(Rs/(K*max(linewidth,1))); if mod(M_used,2)==0, M_used = M_used+1; end M_used = min(max(M_used, M_min), M_max); else M_used = M_fixed; if mod(M_used,2)==0, M_used = M_used+1; end end r4 = rxSym.^4; phi4 = unwrap(angle(r4)); % = 4*phi_carrier + noise + 4*data_phase(被消掉) if exist('movmean','file') == 2 phi4_s = movmean(phi4, M_used); else w = ones(M_used,1)/M_used; phi4_s = conv(phi4, w, 'same'); end phi_est = phi4_s/4 - pi/4; % 去掉QPSK固有 π/4 偏置 rxSym_cpr = rxSym .* exp(-1j*phi_est); %% ---------- π/2 相位模糊:用“已知比特”选择最优旋转 ---------- valid = M_used:Nsym; % 丢弃前 M-1 个(V&V 边界不稳定) txI = bitI(valid); txQ = bitQ(valid); y = rxSym_cpr(valid); bestErr = inf; bestK = 0; bestY = y; for k = 0:3 yk = y .* exp(-1j*k*pi/2); rxI = real(yk) < 0; rxQ = imag(yk) < 0; errTotal = sum(rxI ~= txI) + sum(rxQ ~= txQ); if errTotal < bestErr bestErr = errTotal; bestK = k; bestY = yk; end end rxSym_det = bestY; %% ---------- BER ---------- rxI = real(rxSym_det) < 0; rxQ = imag(rxSym_det) < 0; txBits = zeros(2*length(valid),1); rxBits = zeros(2*length(valid),1); txBits(1:2:end) = txI; txBits(2:2:end) = txQ; rxBits(1:2:end) = rxI; rxBits(2:2:end) = rxQ; numErr = sum(txBits ~= rxBits); nBits = length(txBits); ber = numErr / nBits; if numErr == 0 ub95 = -log(0.05) / nBits; % 95% one-sided upper bound else ub95 = ber; end dbg.bitsPerRun = nBits; %% ---------- 画图 ---------- if doPlots figure; plot(real(txSym(1:1000)), imag(txSym(1:1000)), 'o'); axis square; grid on; title('发送端 QPSK 星座(前 1000 符号)'); xlabel('I'); ylabel('Q'); if plotNoCD figure; plot(real(rxSym_noCD(1:2000)), imag(rxSym_noCD(1:2000)), '.'); axis square; grid on; title('接收端星座(未做CD补偿,前 2000 符号)'); xlabel('I'); ylabel('Q'); end figure; plot(real(rxSym(1:2000)), imag(rxSym(1:2000)), '.'); axis square; grid on; title('接收端星座(EDC 后,CPR 前)'); xlabel('I'); ylabel('Q'); figure; plot(real(rxSym_det(1:min(2000,length(rxSym_det)))), imag(rxSym_det(1:min(2000,length(rxSym_det)))), '.'); axis square; grid on; title('接收端星座(EDC + CPR 后)'); xlabel('I'); ylabel('Q'); % ======================= % Figure 5(更像教材的 V&V 相位跟踪图) % ======================= Kplot = min(200, length(rxSym)); % “教材式”中通常展示: % φ_raw = unwrap(angle(r^4))/4 % φ_smooth= movmean(φ_raw) % φ_est = φ_smooth - π/4 % φ_res = unwrap(angle((r*e^{-jφ_est})^4))/4 (残余更小更平) phi_raw = unwrap(angle(rxSym(1:Kplot).^4))/4; if exist('movmean','file') == 2 phi_smooth = movmean(phi_raw, min(M_used,Kplot)); else w = ones(min(M_used,Kplot),1)/min(M_used,Kplot); phi_smooth = conv(phi_raw, w, 'same'); end phi_est_p = phi_smooth - pi/4; r_cpr_p = rxSym(1:Kplot).*exp(-1j*phi_est_p); phi_res = unwrap(angle(r_cpr_p.^4))/4; % 为了更直观:把曲线整体去均值(只看“变化量/抖动”) phi_raw_z = phi_raw - mean(phi_raw); phi_smooth_z = phi_smooth - mean(phi_smooth); phi_est_z = phi_est_p - mean(phi_est_p); phi_res_z = phi_res - mean(phi_res); figure; plot(1:Kplot, phi_raw_z, '-'); hold on; plot(1:Kplot, phi_smooth_z, '-'); plot(1:Kplot, phi_est_z, '-'); plot(1:Kplot, phi_res_z, '-'); grid on; xlabel('符号索引 k'); ylabel('相位 [rad]'); title('教材式载波相位跟踪示意(V&V:四次方去数据相位)'); legend( ... '\phi_{raw} = unwrap(\angle(r^4))/4 (去数据后)', ... '\phi_{smooth} = movmean(\phi_{raw})', ... '\phi_{est} = \phi_{smooth} - \pi/4 (用于补偿)', ... '\phi_{res} = unwrap(\angle((re^{-j\phi_{est}})^4))/4 (补偿后残余)', ... 'Location','best'); end end )已有运行结果为: =========== 单点仿真(用于画图/展示) =========== ---------------- 仿真结果 ---------------- 传输距离:2000 km (25 × 80 km) QPSK 符号数:131072 激光线宽:10.0 kHz EDFA NF:5.0 dB V&V 窗口 M=2001(useAutoM=1) 相位模糊旋转:k=1 (90°) 误比特数:0 BER ≈ 0.000e+00(若为0,看 95%上界 UB95≈1.160e-05) 【单点】err=0, BER=0.000e+00, UB95=1.160e-05, bitsUsed=258144 =========== 扫 linewidth(固定 NF=5.0 dB, Nmc=10) =========== lw= 1.0 kHz | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 lw= 2.0 kHz | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 lw= 5.0 kHz | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 lw= 10.0 kHz | totalErr= 2 | totalBits=615360 | BER=3.250e-06 | UB95=3.250e-06 lw= 20.0 kHz | totalErr= 3 | totalBits=615360 | BER=4.875e-06 | UB95=4.875e-06 lw= 50.0 kHz | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 lw= 100.0 kHz | totalErr= 840 | totalBits=615360 | BER=1.365e-03 | UB95=1.365e-03 lw= 200.0 kHz | totalErr= 1806 | totalBits=615360 | BER=2.935e-03 | UB95=2.935e-03 lw= 500.0 kHz | totalErr= 9 | totalBits=632960 | BER=1.422e-05 | UB95=1.422e-05 lw= 1000.0 kHz | totalErr= 766 | totalBits=644160 | BER=1.189e-03 | UB95=1.189e-03 =========== 扫 NF(固定 linewidth=10.0 kHz, Nmc=10) =========== NF= 3.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 NF= 4.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 NF= 5.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 NF= 6.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 NF= 7.0 dB | totalErr= 6 | totalBits=615360 | BER=9.750e-06 | UB95=9.750e-06 NF= 8.0 dB | totalErr= 1 | totalBits=615360 | BER=1.625e-06 | UB95=1.625e-06 NF= 9.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 NF=10.0 dB | totalErr= 48 | totalBits=615360 | BER=7.800e-05 | UB95=7.800e-05 NF=11.0 dB | totalErr= 3 | totalBits=615360 | BER=4.875e-06 | UB95=4.875e-06 NF=12.0 dB | totalErr= 5 | totalBits=615360 | BER=8.125e-06 | UB95=8.125e-06 NF=13.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 NF=14.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 NF=15.0 dB | totalErr= 0 | totalBits=615360 | BER=0.000e+00 | UB95=4.868e-06 >>
12-14
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值