Tesseract-OCR 样本训练,生成语言文件

本文详细介绍了如何使用Tesseract OCR进行图像字符识别,并通过自定义训练样本提高识别率。包括Tesseract的安装、图像准备、命令行操作、样本训练流程、字体特征文件定义、语言文件生成以及最终使用训练后的语言库进行识别。教程适用于初学者和希望提升OCR识别准确性的开发者。

原文地址:http://blog.youkuaiyun.com/firehood_/article/details/8433077


记录一下,方便以后复习。原文有些小错误,顺便加以更正


 Tesseract是一个开源的OCR(Optical Character Recognition,光学字符识别)引擎,可以识别多种格式的图像文件并将其转换成文本,目前已支持60多种语言(包括中文)。 Tesseract最初由HP公司开发,后来由Google维护,目前发布在Googel Project上。地址为http://code.google.com/p/tesseract-ocr/


使用默认的语言库识别


1.安装Tesseract

        从http://code.google.com/p/tesseract-ocr/downloads/list下载Tesseract,目前版本为Tesseract3.02。因为只是测试使用,这里直接下载winodws下的安装文件tesseract-ocr-setup-3.02.02.exe。安装成功后会在相应磁盘上生成一个Tesseract-OCR目录。通过目录下的tesseract.exe程序就可以对图像字符进行识别了。
2.准备一副待识别的图像,这里用画图工具随便写了一串数字,保存为number.jpg,如下图所示:
        

3.  打开命令行,定位到Tesseract-OCR目录,输入命令:

[plain] view plaincopy在CODE上查看代码片派生到我的代码片
  1. tesseract.exe number.jpg result -l eng -psm 7

     其中result表示输出结果文件txt名称,eng表示使用的语言文件为英文; -psm 7 意思是将待识别的图片视为一行文字

3.  打开Tesseract-OCR目录下的result.txt文件,看到识别的结果为7542315857,有3个字符识别错误,识别率还不是很高,那有没有什么方法来提供识别率呢?

      其实Tesseract提供了一套训练样本的方法,用以生成自己所需的识别语言库。下面介绍一下具体训练样本的方法。


     


训练样本


关于如何训练样本,Tesseract-OCR官网有详细的介绍http://code.google.com/p/tesseract-ocr/wiki/TrainingTesseract3。这里通过一个简单的例子来介绍一下如何进行样本训练。

1.下载工具jTessBoxEditor. http://sourceforge.net/projects/vietocr/files/jTessBoxEditor/,这个工具是用来训练样本用的,由于该工具是用JAVA开发的,需要安装JAVA虚拟机才能运行。

2. 获取样本图像。用画图工具绘制了5张0-9的文样本图像(当然样本越多越好),如下图所示:(我是自己写了个程序,采集一批目标验证码,然后将其二值化处理之后保存下来作为样本,工程项目目录:D:/projects/ReadPicInfo)

  

  


3.合并样本图像。运行jTessBoxEditor工具,在点击菜单栏中Tools--->Merge TIFF。在弹出的对话框中选择样本图像(按Shift选择多张),合并生成num.font.exp0.tif文件。

4.生成Box File文件。打开命令行,执行命令:

[plain] view plaincopy在CODE上查看代码片派生到我的代码片
  1. tesseract.exe F:\test\num.font.exp0.tif F:\test\num.font.exp0 batch.nochop makebox  

  生成的BOX文件为num.font.exp0.box,BOX文件为Tessercat识别出的文字和其坐标。

注:Make Box File的命令格式为:

[plain] view plaincopy在CODE上查看代码片派生到我的代码片
  1. tesseract [lang].[fontname].exp[num].tif [lang].[fontname].exp[num] batch.nochop makebox  

其中lang为语言名称,fontname为字体名称,num为序号,可以随便定义。

5.文字校正。运行jTessBoxEditor工具,点击Box Editor标签页,然后点击open按钮打开num.font.exp0.tif文件(必须将上一步生成的.box和.tif样本文件放在同一目录),如下图所示。可以看出有些字符识别的不正确,可以通过该工具手动对每张图片中识别错误的字符进行校正。校正完成后保存即可。(下面这张截图不是最新版的jTessBoxEditor。不过用法大体差不多)




6.定义字体特征文件。Tesseract-OCR3.01以上的版本在训练之前需要创建一个名称为font_properties的字体特征文件。

font_properties不含有BOM头,文件内容格式如下:

[plain] view plaincopy在CODE上查看代码片派生到我的代码片
  1. <fontname> <italic> <bold> <fixed> <serif> <fraktur>  

其中fontname为字体名称,必须与[lang].[fontname].exp[num].box中的名称保持一致。<italic> 、<bold> 、<fixed> 、<serif>、 <fraktur>的取值为1或0,表示字体是否具有这些属性。

这里在样本图片所在目录下创建一个名称为font_properties的文件,用记事本打开,输入以下下内容:

[plain] view plaincopy在CODE上查看代码片派生到我的代码片
  1. font 0 0 0 0 0  
这里全取值为0,表示字体不是粗体、斜体等等。

7.生成语言文件。在样本图片所在目录下创建一个批处理文件,输入如下内容。

[plain] view plaincopy在CODE上查看代码片派生到我的代码片
  1. rem 执行改批处理前先要目录下创建font_properties文件  
  2.   
  3. echo Run Tesseract for Training..  
  4. tesseract.exe num.font.exp0.tif num.font.exp0 nobatch box.train  
  5.   
  6. echo Compute the Character Set..  
  7. unicharset_extractor.exe num.font.exp0.box  
  8. mftraining -F font_properties -U unicharset -O num.unicharset num.font.exp0.tr  
  9.   
  10. echo Clustering..  
  11. cntraining.exe num.font.exp0.tr  
  12.   
  13. echo Rename Files..  
  14. rename normproto num.normproto  
  15. rename inttemp num.inttemp  
  16. rename pffmtable num.pffmtable  
  17. rename shapetable num.shapetable   
  18.   
  19. echo Create Tessdata..  
  20. combine_tessdata.exe num.
  21. pause  

直接双击该批处理文件执行。执行后的结果如下:


需确认打印结果中的Offset 1、3、4、5、13这些项不是-1。这样,一个新的语言文件就生成了。

num.traineddata便是最终生成的语言文件,将生成的num.traineddata拷贝到Tesseract-OCR-->tessdata目录下。可以用它来进行字符识别了。


使用训练后的语言库识别


用训练后的语言库识别number.jpg文件, 打开命令行,输入命令:

[plain] view plaincopy在CODE上查看代码片派生到我的代码片
  1. tesseract.exe number.jpg result -l num -psm 7

注意这里的-l参数已经变成了num,意思是使用的语言文件为num,这里原文有错误

识别结果如如图所示,可以看到识别率提高了不少。通过自定义训练样本,可以进行图形验证码、车牌号码识别等。感兴趣的朋友可以研究研究。


总结,总体感觉就是在矫正box文件的时候很繁琐,得一个一个手动修改,是个体力活。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值