Spark Streaming源码解读之Executor容错安全性

本文介绍了Spark中的数据接收、存储及容错机制。Receiver接收到的数据由ReceiverSupervisorImpl管理并存储,通过WAL日志、数据副本或数据流回放等方式实现容错。文章还详细解释了不同存储级别对数据持久化的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Receiver接收到的数据交由ReceiverSupervisorImpl来管理。

ReceiverSupervisorImpl接收到数据后,会数据存储并且将数据的元数据报告给ReceiverTracker 。

Executor的数据容错可以有三种方式:

  1. WAL日志

  2. 数据副本

  3. 接收receiver的数据流回放

/** Store block and report it to driver */
def pushAndReportBlock(
    receivedBlock: ReceivedBlock,
    metadataOption: Option[Any],
    blockIdOption: Option[StreamBlockId]
  ) {
  val blockId = blockIdOption.getOrElse(nextBlockId)
  val time = System.currentTimeMillis
  val blockStoreResult = receivedBlockHandler.storeBlock(blockId, receivedBlock)
  logDebug(s"Pushed block $blockId in ${(System.currentTimeMillis - time)} ms")
  val numRecords = blockStoreResult.numRecords
  val blockInfo = ReceivedBlockInfo(streamId, numRecords, metadataOption, blockStoreResult)
  trackerEndpoint.askWithRetry[Boolean](AddBlock(blockInfo))
  logDebug(s"Reported block $blockId")
}

数据的存储,是借助receiverBlockHandler,它的实现有两种方式:
private val receivedBlockHandler: ReceivedBlockHandler = {
  if (WriteAheadLogUtils.enableReceiverLog(env.conf)) {
    if (checkpointDirOption.isEmpty) {
      throw new SparkException(
        "Cannot enable receiver write-ahead log without checkpoint directory set. " +
          "Please use streamingContext.checkpoint() to set the checkpoint directory. " +
          "See documentation for more details.")
    }
    new WriteAheadLogBasedBlockHandler(env.blockManager, receiver.streamId,
      receiver.storageLevel, env.conf, hadoopConf, checkpointDirOption.get)
  else {
    new BlockManagerBasedBlockHandler(env.blockManager, receiver.storageLevel)
  }
}

WriteAheadLogBaseBlockHandler 一方面将数据交由BlockManager管理,另一方面会写WAL日志。

一旦节点崩溃,可以由WAL日志恢复内存中的数据。在WAL开始时,就不在建议数据存储多个副本。

private val effectiveStorageLevel = {
  if (storageLevel.deserialized) {
    logWarning(s"Storage level serialization ${storageLevel.deserialized} is not supported when" +
      s" write ahead log is enabled, change to serialization false")
  }
  if (storageLevel.replication > 1) {
    logWarning(s"Storage level replication ${storageLevel.replication} is unnecessary when " +
      s"write ahead log is enabled, change to replication 1")
  }
 
  StorageLevel(storageLevel.useDisk, storageLevel.useMemory, storageLevel.useOffHeap, false1)
}

而BlockManagerBaseBlockHandler直接将数据交由BlockManager管理。

如果不写WAL,当节点崩溃了一定会数据丢失吗? 这个也不一定。因为在构建WriteAheadLogBaseBlockHandler,和BlockManagerBaseBlockHandler的时候会将receiver的storageLevel传入。storageLevel用来描述数据保存的地方(内存、磁盘)以及副本个数。

class StorageLevel private(
    private var _useDisk: Boolean,
    private var _useMemory: Boolean,
    private var _useOffHeap: Boolean,
    private var _deserialized: Boolean,
    private var _replication: Int = 1)
  extends Externalizable

公有如下种类的StorageLevel:
val NONE = new StorageLevel(falsefalsefalsefalse)
val DISK_ONLY = new StorageLevel(truefalsefalsefalse)
val DISK_ONLY_2 = new StorageLevel(truefalsefalsefalse2)
val MEMORY_ONLY = new StorageLevel(falsetruefalsetrue)
val MEMORY_ONLY_2 = new StorageLevel(falsetruefalsetrue2)
val MEMORY_ONLY_SER = new StorageLevel(falsetruefalsefalse)
val MEMORY_ONLY_SER_2 = new StorageLevel(falsetruefalsefalse2)
val MEMORY_AND_DISK = new StorageLevel(truetruefalsetrue)
val MEMORY_AND_DISK_2 = new StorageLevel(truetruefalsetrue2)
val MEMORY_AND_DISK_SER = new StorageLevel(truetruefalsefalse)
val MEMORY_AND_DISK_SER_2 = new StorageLevel(truetruefalsefalse2)
val OFF_HEAP = new StorageLevel(falsefalsetruefalse)

默认情况,数据采用MEMORY_AND_DISK_2,也就是说数据会产生两个副本,并且内存不足时会写入磁盘。


数据的最终存储是由BlockManager完成并管理的:


def storeBlock(blockId: StreamBlockId, block: ReceivedBlock): ReceivedBlockStoreResult = {
 
  var numRecords = None: Option[Long]
 
  val putResult: Seq[(BlockId, BlockStatus)] = block match {
    case ArrayBufferBlock(arrayBuffer) =>
      numRecords = Some(arrayBuffer.size.toLong)
      blockManager.putIterator(blockId, arrayBuffer.iterator, storageLevel,
        tellMaster = true)
    case IteratorBlock(iterator) =>
      val countIterator = new CountingIterator(iterator)
      val putResult = blockManager.putIterator(blockId, countIterator, storageLevel,
        tellMaster = true)
      numRecords = countIterator.count
      putResult
    case ByteBufferBlock(byteBuffer) =>
      blockManager.putBytes(blockId, byteBuffer, storageLevel, tellMaster = true)
    case =>
      throw new SparkException(
        s"Could not store $blockId to block manager, unexpected block type ${o.getClass.getName}")
  }
  if (!putResult.map { _._1 }.contains(blockId)) {
    throw new SparkException(
      s"Could not store $blockId to block manager with storage level $storageLevel")
  }
  BlockManagerBasedStoreResult(blockId, numRecords)
}

对于从kafka中直接读取数据,可以通过记录数据offset的方法来进行容错。如果程序崩溃,下次启动时,从上次未处理数据的offset再次读取数据即可。




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值