静态主席树

建树:

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+7;
int n,m,sz;
int root[N]/*存放根节点对应的三数组下标*/,ls[N*44]/*存放当前节点所对应的左节点三数组下标*/,rs[N*44]/*同ls*/,sum[N*44];//存放当前区间内数字的个数
//sum,rl,rs 可以整合为一个结构体
inline void update(int l,int r,int x,int &y,int v)//建树
{
    y=++sz;//y作为新节点下标返回给上一个节点的ls[y]/rs[y]做到更新上一节点的下标对应
    sum[y]=sum[x]+1;//按照上一个结点更新新节点的sum值
    if(l==r)return ;
    ls[y]=ls[x];rs[y]=rs[x];  //复制上一颗树的左右两节点所对应的三个数组下标同一节点的三个下标是一致的也就达到了连接节点的目的,因为rl和rs存在即可以共用之前的节点;
    int mid=(l+r)>>1;
    if(v<=mid)update(l,mid,ls[x],ls[y],v);
    else update(mid+1,r,rs[x],rs[y],v);
}int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        sz=0;
        scanf("%d%d",&n,&m);
        for(int i=1;i<=n;i++)
    {
        int x;
        scanf("%d",&x);
        update(1,n,root[i-1],root[i],x);
    }
    }
}

数据离散化处理例题求区间第K大

#include <bits/stdc++.h>
using namespace std;
const int N=1e5+7;
int n,m,sz,b[N];
int root[N]/*存放根节点对应的三数组下标*/,ls[N*44]/*存放当前节点所对应的左节点三数组下标*/,rs[N*44]/*同ls*/,sum[N*44];//存放当前区间内数字的个数
//sum,rl,rs 可以整合为一个结构体
vector<int>v;
int getid(int x)
{
    return lower_bound(v.begin(),v.end(),x)-v.begin()+1;
}
inline void update(int l,int r,int x,int &y,int v)//建树
{
    y=++sz;//y作为新节点下标返回给上一个节点的ls[y]/rs[y]做到更新上一节点的下标对应
    sum[y]=sum[x]+1;//按照上一个结点更新新节点的sum值
    if(l==r)return ;
    ls[y]=ls[x];rs[y]=rs[x];  //复制上一颗树的左右两节点所对应的三个数组下标同一节点的三个下标是一致的也就达到了连接节点的目的,因为rl和rs存在即可以共用之前的节点;
    int mid=(l+r)>>1;
    if(v<=mid)update(l,mid,ls[x],ls[y],v);
    else update(mid+1,r,rs[x],rs[y],v);
}
int query(int l,int r,int x,int y,int k)
{
   if(l==r) return l;
   int xx=sum[ls[y]]-sum[ls[x]]; //比较左子树的大小和k的关系来确定寻找左子树或者右子树
   int mid=(l+r)>>1;
   if(xx>=k) return query(l,mid,ls[x],ls[y],k);
   else return query(mid+1,r,rs[x],rs[y],k-xx);
}
int main()
{
        cin>>n>>m;
        for(int i=1;i<=n;i++)
    {
       cin>>b[i];
        v.push_back(b[i]);

    }
    sort(v.begin(),v.end());
    v.erase(unique(v.begin(),v.end()),v.end());
    for(int i=1;i<=n;i++)
    update(1,n,root[i-1],root[i],getid(b[i]));
    int x,y,k;
    for(int i=0;i<m;i++)
        {
           cin>>x>>y>>k;
        cout<<v[query(1,n,root[x-1],root[y],k)-1]<<endl;
       }
}

 

转载于:https://www.cnblogs.com/xbqdsjh/p/11415676.html

【四轴飞行器】非线性三自由度四轴飞行器模拟器研究(Matlab代码实现)内容概要:本文围绕非线性三自由度四轴飞行器模拟器的研究展开,重点介绍了基于Matlab的建模与仿真方法。通过对四轴飞行器的动力学特性进行分析,构建了非线性状态空间模型,并实现了姿态与位置的动态模拟。研究涵盖了飞行器运动方程的建立、控制系统设计及数值仿真验证等环节,突出非线性系统的精确建模与仿真优势,有助于深入理解飞行器在复杂工况下的行为特征。此外,文中还提到了多种配套技术如PID控制、状态估计与路径规划等,展示了Matlab在航空航天仿真中的综合应用能力。; 适合人群:具备一定自动控制理论基础和Matlab编程能力的高校学生、科研人员及从事无人机系统开发的工程技术人员,尤其适合研究生及以上层次的研究者。; 使用场景及目标:①用于四轴飞行器控制系统的设计与验证,支持算法快速原型开发;②作为教学工具帮助理解非线性动力学系统建模与仿真过程;③支撑科研项目中对飞行器姿态控制、轨迹跟踪等问题的深入研究; 阅读建议:建议读者结合文中提供的Matlab代码进行实践操作,重点关注动力学建模与控制模块的实现细节,同时可延伸学习文档中提及的PID控制、状态估计等相关技术内容,以全面提升系统仿真与分析能力。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值