Web应用

介绍
  在这篇文章中,我们将讨论几个有助于提升Java应用程序性能的方法。我们首先将介绍如何定义可度量的性能指标,然后看看有哪些工具可以用来度量和监控应用程序性能,以及确定性能瓶颈。

我们还将看到一些常见的Java代码优化方法以及最佳编码实践。最后,我们将看看用于提升Java应用程序性能的JVM调优技巧和架构调整。

请注意,性能优化是一个很宽泛的话题,而本文只是对JVM探索的一个起点。

性能指标
  在开始优化应用程序的性能之前,我们需要理解诸如可扩展性、性能、可用性等方面的非功能需求。

以下是典型Web应用程序常用的一些性能指标:

应用程序平均响应时间
  系统必须支持的平均并发用户数
  在负载高峰期间,预期的每秒请求数
  这些指标可以通过使用多种监视工具监测到,它们对分析性能瓶颈和性能调优有着非常大的作用。

示例应用程序
  我们将使用一个简单的Spring Boot Web应用程序作为示例,在这篇文章中有相关的介绍。这个应用程序可用于管理员工列表,并对外公开了添加和检索员工的REST API。减肥食谱:www.sheonline.cn

我们将使用这个程序作为参考来运行负载测试,并在接下来的章节中监控各种应用指标。

找出性能瓶颈
  负载测试工具和应用程序性能管理(APM)解决方案常用于跟踪和优化Java应用程序的性能。要找出性能瓶颈,主要就是对各种应用场景进行负载测试,并同时使用APM工具对CPU、IO、堆的使用情况进行监控等等。

Gatling是进行负载测试最好的工具之一,它提供了对HTTP协议的支持,是HTTP服务器负载测试的绝佳选择。

Stackify的Retrace是一个成熟的APM解决方案。它的功能很丰富,对确定应用程序的性能基线很有帮助。 Retrace的关键组件之一是它的代码分析功能,它能够在不减慢应用程序的情况下收集运行时信息。

Retrace还提供了监视基于JVM应用程序的内存、线程和类的小部件。除了应用程序本身的指标之外,它还支持监视托管应用程序的服务器的CPU和IO使用情况。

因此,像Retrace这样功能全面的监控工具是解锁应用程序性能潜力的第一步。而第二步则是在你的系统上重现真实使用场景和负载。
  如果有想学Java的朋友可以进IT交流q裙哦 这里有大神 也有小白 也有刚刚跟你一样经历过 现在已经做上IT工作的前辈 大家相互学习 相互交流 《49 **6零三吧 649》 一定要 进裙备注:亚索 要不管理员会不加你的。
  说起来容易,做起来难,而且了解应用程序当前的性能也非常重要。这就是我们接下来要关注的问题。

Gatling负载测试
  Gatling的模拟测试脚本是用Scala编写的,但该工具还附带了一个非常有用的图形界面,可用于记录具体的场景,并生成Scala脚本。

在运行模拟脚本之后,Gatling会生成一份非常有用的、可用于分析的HTML报告。
  监控应用程序
  要使用Retrace进行Java应用程序的开发,首先需要在Stackify上申请免费试用账号。然后,将我们自己的Spring Boot应用程序配置为Linux服务。我们还需要在托管应用程序的服务器上安装Retrace代理,按照这篇文章所述的操作即可。

Retrace代理和要监控的Java应用程序启动后,我们就可以到Retrace仪表板上单击AddApp按钮添加应用了。添加应用完成之后,Retrace将开始监控应用程序了。
  代码级别的优化
  负载测试和应用程序监控对于确定应用程序的一些关键性能瓶颈非常有用。但同时,我们需要遵循良好的编码习惯,以避免在对应用程序进行监控的时候出现过多的性能问题。

内容概要:本文介绍了ENVI Deep Learning V1.0的操作教程,重点讲解了如何利用ENVI软件进行深度学习模型的训练与应用,以实现遥感图像中特定目标(如集装箱)的自动提取。教程涵盖了从数据准备、标签图像创建、模型初始化与训练,到执行分类及结果优化的完整流程,并介绍了精度评价与通过ENVI Modeler实现一键化建模的方法。系统基于TensorFlow框架,采用ENVINet5(U-Net变体)架构,支持通过点、线、面ROI或分类图生成标签数据,适用于多/高光谱影像的单一类别特征提取。; 适合人群:具备遥感图像处理基础,熟悉ENVI软件操作,从事地理信息、测绘、环境监测等相关领域的技术人员或研究人员,尤其是希望将深度学习技术应用于遥感目标识别的初学者与实践者。; 使用场景及目标:①在遥感影像中自动识别和提取特定地物目标(如车辆、建筑、道路、集装箱等);②掌握ENVI环境下深度学习模型的训练流程与关键参数设置(如Patch Size、Epochs、Class Weight等);③通过模型调优与结果反馈提升分类精度,实现高效自动化信息提取。; 阅读建议:建议结合实际遥感项目边学边练,重点关注标签数据制作、模型参数配置与结果后处理环节,充分利用ENVI Modeler进行自动化建模与参数优化,同时注意软硬件环境(特别是NVIDIA GPU)的配置要求以保障训练效率。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值