关于二叉搜索树的一些操作

本文介绍了一种二叉树的基本操作实现方法,包括插入、查找、删除等关键功能,并提供了详细的C语言代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

#include "stdafx.h"
#include "iostream"
#include "stdlib.h"
#define ElementType int
typedef struct TreeNode *tree;
struct TreeNode{
ElementType Date;
tree Left;
tree Right;
};
tree MakeEmpty(tree T);
tree Insert(ElementType x,tree T);
tree Find(ElementType x,tree T);
tree FindMax(tree T);
tree FindMin(tree T);
tree Delete(ElementType x,tree T);
tree MakeEmpty(tree T)
{
	if(T!=NULL)
	{
		MakeEmpty(T->Left);
		MakeEmpty(T->Right);
		free(T);
	}
	return NULL;
}
tree FindMax(tree T)
{
	if(T==NULL)
		return NULL;
	else if(T->Right==NULL)
		return T;
	else
		return FindMax(T->Right);

}
tree FindMin(tree T)
{
	if(T!=NULL)
	{
		while(T->Left!=NULL)
			T=T->Left;
	}
	return T;
}
tree Insert(ElementType x,tree T)
{
	if(T==NULL)
	{
		T=(tree)malloc(sizeof(struct TreeNode));
		if(T==NULL)
			printf("error\n");
		else{
		T->Date=x;
		T->Left=T->Right=NULL;
		}
	}
	else if(x>T->Date)
		T->Right=Insert (x,T->Right);//之前这里光Insert但并没有赋给T->Right,所以树根本没建立起来;
	else if(x<T->Date)
		T->Left=Insert(x,T->Left);
	return T;
}
tree Find(ElementType x,tree T)
{
	if(NULL==T)
		return NULL;
	else if(x==T->Date)
		return T;
	else if(x>T->Date)
		return Find(x,T->Right);
	else
	    return Find(x,T->Left);
}
tree Delete(ElementType x,tree T)
{
	tree tmp;
	//T=Find(x,T);
	if(T==NULL)
		printf("error");
	else if(x<T->Date)
		T->Left=Delete(x,T->Left);
	else if(x>T->Date)
		T->Right=Delete(x,T->Right);
	else if(T->Left&&T->Right)//这里是当树的左右节点都存在的情况,策略是用右子树的最小数据代替要删除的点
	{
		tmp=FindMin(T->Right);
		T->Date=tmp->Date;
		T->Right=Delete(T->Date,T->Right);

	}
	else//只有一个节点或没有的情况;
	{
                 tmp=T;
		 if(T->Left==NULL)
			 T=T->Right;
		 else if(T->Right==NULL)
			 T=T->Left;
		 free(tmp);//这里是要释放原结点
	}
	return T;

}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值