1023. Have Fun with Numbers (20)
Notice that the number 123456789 is a 9-digit number consisting exactly the numbers from 1 to 9, with no duplication. Double it we will obtain 246913578, which happens to be another 9-digit number consisting exactly the numbers from 1 to 9, only in a different permutation. Check to see the result if we double it again!
Now you are suppose to check if there are more numbers with this property. That is, double a given number with k digits, you are to tell if the resulting number consists of only a permutation of the digits in the original number.
Input Specification:
Each input file contains one test case. Each case contains one positive integer with no more than 20 digits.
Output Specification:
For each test case, first print in a line "Yes" if doubling the input number gives a number that consists of only a permutation of the digits in the original number, or "No" if not. Then in the next line, print the doubled number.
Sample Input:1234567899Sample Output:
Yes 2469135798
#include <iostream>
#include <string>
using namespace std;
string change2s(int a){
int m;
string ss,sa="0";
while(a>0){
m=a%10;
sa[0]=m+'0';
ss.append(sa);
a=a/10;
}
return ss;
}
int main(){
string a;
while(cin>>a){
string b="0",ss;
int temp=0,digit,n;
n=a.size();
for(int i=1;i<=n;i++){
int sum=(a[n-i]-'0')*2+temp;
if(sum>9){
temp=1;
digit=sum-10+'0';
}else{
digit=sum+'0';
temp=0;
}
b[0]=digit;
ss.insert(0,b);
}
if(temp==1){
ss.insert(0,"1");
cout<<"No"<<endl<<ss;
}else {
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
if(ss[i]==a[j]){
a[j]='a';
}
}
}
bool flag=true;
for(int i=0;i<n;i++){
if(a[i]!='a'){
flag=false;
}
}
if(flag==false){
cout<<"No";
}else{
cout<<"Yes";
}
cout<<endl<<ss;
}
}
return 0;
}