Question Answering: IR-QA

ClouderaFastForward的两位研究工程师将用两个月时间构建一个信息检索(IR)为基础的问答(QA)系统。系统包含两部分:文档检索器和文档阅读器。检索器作为搜索引擎,排名并返回相关文档;阅读器运用NLP技术,从候选文档中提取最符合问题的答案。他们计划实验多种Transformer架构(如BERT)来改进文档阅读器,并使用现成的搜索算法优化检索器。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 【转】NLP for Question Answering: IR-QA

Over the course of the next two months, two of Cloudera Fast Forward’s Research Engineers,
Melanie Beck and Ryan Micallef, will build a QA system following the information retrieval-based
method, by creating a document retriever and document reader.

We’ll focus our efforts on exploring and experimenting with various Transformer architectures
(like BERT) for the document reader, as well as off-the-shelf search engine algorithms for the retriever.

IR-QA

-

-Below we illustrate the workflow of a generic IR-based QA system. These systems generally
have two main components: the document retriever and the document reader.

The document retriever functions as the search engine, ranking and retrieving relevant
documents to which it has access. It supplies a set of candidate documents that could
answer the question (often with mixed results, per the Google search shown above).

The document reader consists of reading comprehension algorithms built with core
NLP techniques. This component processes the candidate documents and extracts
from one of them an explicit span of text that best satisfies the query. Let’s dive
deeper into each of these components.

======================

Ref:

https://experiments.fastforwardlabs.com/
https://qa.fastforwardlabs.com/
Building a QA System with BERT on Wikipedia
https://qa.fastforwardlabs.com/pytorch/hugging%20face/wikipedia/bert/transformers/2020/05/19/Getting_Started_with_QA.html

SQuAD2.0  https://rajpurkar.github.io/SQuAD-explorer/

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值