第12周 项目4(5)-输出通过一个节点的所有简单回路

本文介绍了一个C语言程序,用于找出图中通过特定节点的所有简单回路。程序利用深度优先搜索算法实现,并展示了如何构建和输出邻接矩阵及邻接表。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

/* 
*文件名称:1.pp 
*作者:崔从敏 
*完成日期:2015年11月20日 
*问题描述:输出通过一个节点的所有简单回路 
 
*/
#include <stdio.h>
#include <malloc.h>
#define GRAPH_H_INCLUDED

#define MAXV 100                //最大顶点个数
#define INF 32767       //INF表示∞
typedef int InfoType;

//以下定义邻接矩阵类型
typedef struct
{
    int no;                     //顶点编号
    InfoType info;              //顶点其他信息,在此存放带权图权值
} VertexType;                   //顶点类型

typedef struct                  //图的定义
{
    int edges[MAXV][MAXV];      //邻接矩阵
    int n,e;                    //顶点数,弧数
    VertexType vexs[MAXV];      //存放顶点信息
} MGraph;                       //图的邻接矩阵类型

//以下定义邻接表类型
typedef struct ANode            //弧的结点结构类型
{
    int adjvex;                 //该弧的终点位置
    struct ANode *nextarc;      //指向下一条弧的指针
    InfoType info;              //该弧的相关信息,这里用于存放权值
} ArcNode;

typedef int Vertex;

typedef struct Vnode            //邻接表头结点的类型
{
    Vertex data;                //顶点信息
    int count;                  //存放顶点入度,只在拓扑排序中用
    ArcNode *firstarc;          //指向第一条弧
} VNode;

typedef VNode AdjList[MAXV];    //AdjList是邻接表类型

typedef struct
{
    AdjList adjlist;            //邻接表
    int n,e;                    //图中顶点数n和边数e
} ALGraph;                      //图的邻接表类型

//功能:由一个反映图中顶点邻接关系的二维数组,构造出用邻接矩阵存储的图
//参数:Arr - 数组名,由于形式参数为二维数组时必须给出每行的元素个数,在此将参数Arr声明为一维数组名(指向int的指针)
//      n - 矩阵的阶数
//      g - 要构造出来的邻接矩阵数据结构
void ArrayToMat(int *Arr, int n, MGraph &g); //用普通数组构造图的邻接矩阵
void ArrayToList(int *Arr, int n, ALGraph *&); //用普通数组构造图的邻接表
void MatToList(MGraph g,ALGraph *&G);//将邻接矩阵g转换成邻接表G
void ListToMat(ALGraph *G,MGraph &g);//将邻接表G转换成邻接矩阵g
void DispMat(MGraph g);//输出邻接矩阵g
void DispAdj(ALGraph *G);//输出邻接表G

void ArrayToMat(int *Arr, int n, MGraph &g)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    g.n=n;
    for (i=0; i<g.n; i++)
        for (j=0; j<g.n; j++)
        {
            g.edges[i][j]=Arr[i*n+j]; //将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j],计算存储位置的功夫在此应用
            if(g.edges[i][j]!=0)
                count++;
        }
    g.e=count;
}

void ArrayToList(int *Arr, int n, ALGraph *&G)
{
    int i,j,count=0;  //count用于统计边数,即矩阵中非0元素个数
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    G->n=n;
    for (i=0; i<n; i++)                 //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<n; i++)                 //检查邻接矩阵中每个元素
        for (j=n-1; j>=0; j--)
            if (Arr[i*n+j]!=0)      //存在一条边,将Arr看作n×n的二维数组,Arr[i*n+j]即是Arr[i][j]
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=Arr[i*n+j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }

    G->e=count;
}

void MatToList(MGraph g, ALGraph *&G)
//将邻接矩阵g转换成邻接表G
{
    int i,j;
    ArcNode *p;
    G=(ALGraph *)malloc(sizeof(ALGraph));
    for (i=0; i<g.n; i++)                   //给邻接表中所有头节点的指针域置初值
        G->adjlist[i].firstarc=NULL;
    for (i=0; i<g.n; i++)                   //检查邻接矩阵中每个元素
        for (j=g.n-1; j>=0; j--)
            if (g.edges[i][j]!=0)       //存在一条边
            {
                p=(ArcNode *)malloc(sizeof(ArcNode));   //创建一个节点*p
                p->adjvex=j;
                p->info=g.edges[i][j];
                p->nextarc=G->adjlist[i].firstarc;      //采用头插法插入*p
                G->adjlist[i].firstarc=p;
            }
    G->n=g.n;
    G->e=g.e;
}

void ListToMat(ALGraph *G,MGraph &g)
//将邻接表G转换成邻接矩阵g
{
    int i,j;
    ArcNode *p;
    g.n=G->n;   //根据一楼同学“举报”改的。g.n未赋值,下面的初始化不起作用
    g.e=G->e;
    for (i=0; i<g.n; i++)   //先初始化邻接矩阵
        for (j=0; j<g.n; j++)
            g.edges[i][j]=0;
    for (i=0; i<G->n; i++)  //根据邻接表,为邻接矩阵赋值
    {
        p=G->adjlist[i].firstarc;
        while (p!=NULL)
        {
            g.edges[i][p->adjvex]=p->info;
            p=p->nextarc;
        }
    }
}

void DispMat(MGraph g)
//输出邻接矩阵g
{
    int i,j;
    for (i=0; i<g.n; i++)
    {
        for (j=0; j<g.n; j++)
            if (g.edges[i][j]==INF)
                printf("%3s","∞");
            else
                printf("%3d",g.edges[i][j]);
        printf("\n");
    }
}

void DispAdj(ALGraph *G)
//输出邻接表G
{
    int i;
    ArcNode *p;
    for (i=0; i<G->n; i++)
    {
        p=G->adjlist[i].firstarc;
        printf("%3d: ",i);
        while (p!=NULL)
        {
            printf("-->%d/%d ",p->adjvex,p->info);
            p=p->nextarc;
        }
        printf("\n");
    }
}
int visited[MAXV];       //全局变量
void DFSPath(ALGraph *G,int u,int v,int path[],int d)
//d是到当前为止已走过的路径长度,调用时初值为-1
{
    int w,i;
    ArcNode *p;
    visited[u]=1;
    d++;
    path[d]=u;
    p=G->adjlist[u].firstarc;   //p指向顶点u的第一条边
    while (p!=NULL)
    {
        w=p->adjvex;            //w为顶点u的相邻点
        if (w==v && d>0)        //找到一个回路,输出之
        {
            printf("  ");
            for (i=0; i<=d; i++)
                printf("%d ",path[i]);
            printf("%d \n",v);
        }
        if (visited[w]==0)          //w未访问,则递归访问之
            DFSPath(G,w,v,path,d);
        p=p->nextarc;       //找u的下一个邻接顶点
    }
    visited[u]=0;           //恢复环境:使该顶点可重新使用
}

void FindCyclePath(ALGraph *G,int k)
//输出经过顶点k的所有回路
{
    int path[MAXV],i;
    for (i=0; i<G->n; i++)
        visited[i]=0; //访问标志数组初始化
    printf("经过顶点%d的所有回路\n",k);
    DFSPath(G,k,k,path,-1);
    printf("\n");
}

int main()
{
    ALGraph *G;
    int A[5][5]=
    {
        {0,1,1,0,0},
        {0,0,1,0,0},
        {0,0,0,1,1},
        {0,0,0,0,1},
        {1,0,0,0,0}
    };  //请画出对应的有向图
    ArrayToList(A[0], 5, G);
    FindCyclePath(G, 0);
    return 0;
}


用于测试的图结构:

运行结果:

### 创建含哈密顿回路12节点加权图 为了构建一个包含哈密顿回路12节点带权图,可以通过以下方式定义其邻接矩阵: 1. 首先建立一条基本路径,使得该路径能够遍历所有的节点恰好一次。这构成了哈密顿路径的基础结构。 2. 接下来,在这条路径的基础上增加额外边来形成闭合环路,即构成哈密顿回路。这意味着从最后一个节点应该有一条返回到起始节点的连接[^1]。 3. 对于权重分配,可以在满足上述条件下随机赋予每条边上不同的正整数值作为权重,从而得到一个具体的实例化方案。 下面展示了一个Python实现的例子,用于生成这样的图形并输出对应的邻接矩阵表示形式: ```python import numpy as np def create_weighted_hamiltonian_graph(num_nodes=12, min_weight=1, max_weight=9): adj_matrix = np.zeros((num_nodes, num_nodes), dtype=int) # Create Hamiltonian path (i -> i+1) for i in range(0, num_nodes - 1): weight = np.random.randint(min_weight, max_weight + 1) adj_matrix[i][i + 1] = weight # Close the loop to form a Hamiltonian cycle by connecting last node back to first one. final_edge_weight = np.random.randint(min_weight, max_weight + 1) adj_matrix[num_nodes - 1][0] = final_edge_weight return adj_matrix adjacency_matrix = create_weighted_hamiltonian_graph() print("Adjacency Matrix of Weighted Graph with Hamiltonian Cycle:") for row in adjacency_matrix: print(' '.join(f"{item:2d}" for item in row)) ``` 此代码片段会创建一个大小为`num_nodes×num_nodes` 的零矩阵 `adj_matrix`, 并按照顺序填充代表哈密尔顿路径的部分;最后一步则是通过设置从最后一行指向第零列的位置上的值完成闭环操作,进而形成了完整的哈密尔顿圈。注意这里使用的权重范围是从最小值`min_weight` 到最大值 `max_weight`之间的一个随机数,可以根据实际需求调整这些参数[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值