【codeforces 348D】Turtles

本文介绍LGV定理在二维空间中计算从起点集到终点集不相交路径方案数的应用,通过矩阵的行列式计算路径方案数,并提出使用暴力dp方法求解。

题目描述

社论

LGV定理告诉我们,在二维空间下,有起点集 $S$,以及终点集 $T$,从 $S$ 到 $T$ 的每一个点走到对应点且不相交路径的方案数为下列矩阵的行列式:

$$
\begin{pmatrix}
f(S_1,T_1) & f(S_1,T_2) & f(S_1,T_3) & \cdots & f(S_1,T_n) \\
f(S_2,T_1) & f(S_2,T_2) & f(S_2,T_3) & \cdots & f(S_2,T_n) \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
f(S_n,T_1) & f(S_n,T_2) & f(S_n,T_3) & \cdots & f(S_n,T_n)
\end{pmatrix}
$$

其中 $f(S,T)$ 表示从 $S$ 到 $T$ 的方案数

然后就每次暴力 $dp$ 一下即可

转载于:https://www.cnblogs.com/KingSann/articles/11128552.html

根据原作 https://pan.quark.cn/s/0ed355622f0f 的源码改编 野火IM解决方案 野火IM是专业级即时通讯和实时音视频整体解决方案,由北京野火无限网络科技有限公司维护和支持。 主要特性有:私有部署安全可靠,性能强大,功能齐全,全平台支持,开源率高,部署运维简单,二次开发友好,方便与第三方系统对接或者嵌入现有系统中。 详细情况请参考在线文档。 主要包括一下项目: 野火IM Vue Electron Demo,演示如何将野火IM的能力集成到Vue Electron项目。 前置说明 本项目所使用的是需要付费的,价格请参考费用详情 支持试用,具体请看试用说明 本项目默认只能连接到官方服务,购买或申请试用之后,替换,即可连到自行部署的服务 分支说明 :基于开发,是未来的开发重心 :基于开发,进入维护模式,不再开发新功能,鉴于已经终止支持且不再维护,建议客户升级到版本 环境依赖 mac系统 最新版本的Xcode nodejs v18.19.0 npm v10.2.3 python 2.7.x git npm install -g node-gyp@8.3.0 windows系统 nodejs v18.19.0 python 2.7.x git npm 6.14.15 npm install --global --vs2019 --production windows-build-tools 本步安装windows开发环境的安装内容较多,如果网络情况不好可能需要等较长时间,选择早上网络较好时安装是个好的选择 或参考手动安装 windows-build-tools进行安装 npm install -g node-gyp@8.3.0 linux系统 nodej...
### Codeforces 1487D Problem Solution The problem described involves determining the maximum amount of a product that can be created from given quantities of ingredients under an idealized production process. For this specific case on Codeforces with problem number 1487D, while direct details about this exact question are not provided here, similar problems often involve resource allocation or limiting reagent type calculations. For instance, when faced with such constraints-based questions where multiple resources contribute to producing one unit of output but at different ratios, finding the bottleneck becomes crucial. In another context related to crafting items using various materials, it was determined that the formula `min(a[0],a[1],a[2]/2,a[3]/7,a[4]/4)` could represent how these limits interact[^1]. However, applying this directly without knowing specifics like what each array element represents in relation to the actual requirements for creating "philosophical stones" as mentioned would require adjustments based upon the precise conditions outlined within 1487D itself. To solve or discuss solutions effectively regarding Codeforces' challenge numbered 1487D: - Carefully read through all aspects presented by the contest organizers. - Identify which ingredient or component acts as the primary constraint towards achieving full capacity utilization. - Implement logic reflecting those relationships accurately; typically involving loops, conditionals, and possibly dynamic programming depending on complexity level required beyond simple minimum value determination across adjusted inputs. ```cpp #include <iostream> #include <vector> using namespace std; int main() { int n; cin >> n; vector<long long> a(n); for(int i=0;i<n;++i){ cin>>a[i]; } // Assuming indices correspond appropriately per problem statement's ratio requirement cout << min({a[0], a[1], a[2]/2LL, a[3]/7LL, a[4]/4LL}) << endl; } ``` --related questions-- 1. How does identifying bottlenecks help optimize algorithms solving constrained optimization problems? 2. What strategies should contestants adopt when translating mathematical formulas into code during competitive coding events? 3. Can you explain why understanding input-output relations is critical before implementing any algorithmic approach? 4. In what ways do prefix-suffix-middle frameworks enhance model training efficiency outside of just tokenization improvements? 5. Why might adjusting sample proportions specifically benefit models designed for tasks requiring both strong linguistic comprehension alongside logical reasoning skills?
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值