【vijos】1789 String(组合计数+奇怪的题)

本文探讨了一种算法,用于计算由M个不同字母组成的长度为N的字符串中,所有长度为K的子串均为回文串的数量。通过分析不同情况下的解法,如k等于1或大于N,k等于N,k为奇数和偶数时的特殊性质,给出了详细的代码实现。

https://vijos.org/p/1789

我yy了一下发现我的方法没错啊,为嘛才80分。。(后来看了题解,噗,还要判断k>n和k=1的情况QAQ

当k=1的时候,答案显然是m^n

当k>n的时候,显然随便搞都满足

当n=k的时候,显然这是个排列就能做的,枚举一半必定有且只有一个另一半与之对应,所以直接做就行了。

当k是奇数的时候,我们可以假设有一个奇数长的模型,每一次向右移动一个,显然最前边和最后边、此前边和次后边以此类推,他们都是相等的,也就是说,这个序列一定由两个元素组成(可以相同)那么显然有m*m种方法

当k是偶数的时候,根据前边的分析,显然只有m种序列(每一种序列的元素是一模一样的)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
typedef unsigned long long ll;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(ll i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const ll getint() { ll r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }

const ll MD=1e9+7;
ll n, m, k, ans=1;
ll mul(ll a, ll b) { return ((a%MD)*(b%MD))%MD; }
int main() {
	read(n); read(m); read(k);
	if(k==1 || k>n) for1(i, 1, n) ans=mul(ans, m);
	else if(n==k) {
		ll mid=(n+1)>>1; ans=1;
		for1(i, 1, mid) ans=mul(ans, m);
	}
	else if(k&1) ans=mul(m, m);
	else ans=m;
	printf("%lld\n", ans%MD);
	return 0;
}

 

 


 

 

描述

假设有M个字母,问由这些字母可以组成多少个满足以下条件的长度为N的串:该串的任意长度为K的子串是一个回文串。答案可能很大,只需输出对10^9+7取模的结果。

回文串是指从左往右和从右往左读起来一样。例如:aba, abba

格式

输入格式

读入三个正整数:N,M,K。

输出格式

输出一个整数,表示满足条件的串的个数对10^9+7取模的结果。

样例1

样例输入1[复制]

5 2 4

样例输出1[复制]

2

限制

每个测试点1s。

提示

对于30%的测试数据,N,M<=5。

对于100%的测试数据,N,M,K<=2000。

转载于:https://www.cnblogs.com/iwtwiioi/p/4011662.html

【EI复现】基于主从博弈的新型城镇配电系统产消者竞价策略【IEEE33节点】(Matlab代码实现)内容概要:本文介绍了基于主从博弈理论的新型城镇配电系统中产消者竞价策略的研究,结合IEEE33节点系统,利用Matlab进行仿真代码实现。该研究聚焦于电力市场环境下产消者(既生产又消费电能的主体)之间的博弈行为建模,通过构建主从博弈模型优化竞价策略,提升配电系统运行效率与经济性。文中详细阐述了模型构建思路、优化算法设计及Matlab代码实现过程,旨在复现高水平期刊(EI收录)研究成果,适用于电力系统优化、能源互联网及需求响应等领域。; 适合人群:具备电力系统基础知识和一定Matlab编程能力的研究生、科研人员及从事能源系统优化工作的工程技术人员;尤其适合致力于电力市场博弈、分布式能源调度等方向的研究者。; 使用场景及目标:① 掌握主从博弈在电力系统产消者竞价中的建模方法;② 学习Matlab在电力系统优化仿真中的实际应用技巧;③ 复现EI级别论文成果,支撑学术研究或项目开发;④ 深入理解配电系统中分布式能源参与市场交易的决策机制。; 阅读建议:建议读者结合IEEE33节点标准系统数据,逐步调试Matlab代码,理解博弈模型的变量设置、目标函数构建与求解流程;同时可扩展研究不同市场机制或引入不确定性因素以增强模型实用性。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值