【vijos】1629 八(容斥原理+dfs)

本文探讨了如何使用容斥原理解决寻找特定区间内既被8整除又不被一系列给定数整除的数的问题。通过递归深度优先搜索算法实现,并提供了完整的C++代码示例。

https://vijos.org/p/1629

本来是想出来了的,,,,但是有个地方写挫了一直没发现,sad

就是dfs的时候我传的pos传错了QAQ

这题用容斥很好想

首先在区间[l, r]能被a整除的数有r/a-(l-1)/a,下取整。

而这题要求的是

upd:很早以前写的这个公式感觉不怎么好,还是用《组合数学》上边的容斥来想吧。。。我就不写了。

其中B是区间内能被8整除的数,Ai分别为能整除所给的数的集合

那么我们用容斥加加减减即可。

同时要注意,算整除a和b的数并不是算a×b的数,而是lcm(a, b)

#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
using namespace std;
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; }

typedef unsigned long long ll;
ll l, r, ans, a[18];
int n;
ll get(ll c) { return r/c-(l-1)/c; }
ll gcd(ll a, ll b) { return b?gcd(b, a%b):a; }
void dfs(int x, ll c, int pos) {
	if(c>r) return;
	if(x&1) ans-=get(c);
	else ans+=get(c);
	for1(i, pos+1, n) dfs(x+1, c/gcd(c, a[i])*a[i], i);
}
int main() {
	read(n);
	for1(i, 1, n) read(a[i]);
	read(l); read(r);
	dfs(0, 8, 0);
	printf("%lld\n", ans);
	return 0;
}

 

 


 

 

描述

八是个很有趣的数字啊。八=发,八八=爸爸,88=拜拜。当然最有趣的还是8用二进制表示是1000。怎么样,有趣吧。当然题目和这些都没有关系。

某个人很无聊,他想找出[a,b]中能被8整除却不能被其他一些数整除的数。

格式

输入格式

第一行一个数n,代表不能被整除的数的个数。

第二行n个数,中间用空格隔开。

第三行两个数a,b,中间一个空格。

输出格式

一个整数,为[a,b]间能被8整除却不能被那n个数整除的数的个数。

样例1

样例输入1[复制]

3
7764 6082 462
2166 53442

样例输出1[复制]

6378

限制

各个测试点1s

提示

对于30%的数据, 1≤n≤5,1≤a≤b≤100000。

对于100%的数据,1≤n≤15,1≤a≤b≤10^9,N个数全都小于等于10000大于等于1。

来源

Rcx 原创
NOIP 2009·Dream Team 模拟赛 第一期 第一题

转载于:https://www.cnblogs.com/iwtwiioi/p/4009380.html

基于TROPOMI高光谱遥感仪器获取的大气成分观测资料,本研究聚焦于大气污染物一氧化氮(NO₂)的空间分布与浓度定量反演问题。NO₂作为影响空气质量的关键指标,其精确监测对环境保护与大气科学研究具有显著价值。当前,利用卫星遥感数据结合先进算法实现NO₂浓度的高精度反演已成为该领域的重要研究方向。 本研究构建了一套以深度学习为核心的技术框架,整合了来自TROPOMI仪器的光谱辐射信息、观测几何参数以及辅助气象数据,形成多维度特征数据集。该数据集充分融合了不同来源的观测信息,为深入解析大气中NO₂的时空变化规律提供了数据基础,有助于提升反演模型的准确性与环境预测的可靠性。 在模型架构方面,项目设计了一种多分支神经网络,用于分别处理光谱特征与气象特征等多模态数据。各分支通过独立学习提取代表性特征,并在深层网络中进行特征融合,从而综合利用不同数据的互补信息,显著提高了NO₂浓度反演的整体精度。这种多源信息融合策略有效增强了模型对复杂大气环境的表征能力。 研究过程涵盖了系统的数据处理流程。前期预处理包括辐射定标、噪声抑制及数据标准化等步骤,以保障输入特征的质量与一致性;后期处理则涉及模型输出的物理量转换与结果验证,确保反演结果符合实际大气浓度范围,提升数据的实用价值。 此外,本研究进一步对不同功能区域(如城市建成区、工业带、郊区及自然背景区)的NO₂浓度分布进行了对比分析,揭示了人类活动与污染物空间格局的关联性。相关结论可为区域环境规划、污染管控政策的制定提供科学依据,助力大气环境治理与公共健康保护。 综上所述,本研究通过融合TROPOMI高光谱数据与多模态特征深度学习技术,发展了一套高效、准确的大气NO₂浓度遥感反演方法,不仅提升了卫星大气监测的技术水平,也为环境管理与决策支持提供了重要的技术工具。 资源来源于网络分享,仅用于学习交流使用,请勿用于商业,如有侵权请联系我删除!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值