POJ2385——Apple Catching

探讨了Bessie在两棵苹果树间捕捉落下的苹果的问题,通过动态规划算法,寻找在限定行走次数内捕获最多苹果的策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

                                            $Apple~Catching$
Time Limit: 1000MS Memory Limit: 65536K
Total Submissions: 16248 Accepted: 8009

$Description$

It is a little known fact that cows love apples. Farmer John has two apple trees (which are conveniently numbered 1 and 2) in his field, each full of apples. Bessie cannot reach the apples when they are on the tree, so she must wait for them to fall. However, she must catch them in the air since the apples bruise when they hit the ground (and no one wants to eat bruised apples). Bessie is a quick eater, so an apple she does catch is eaten in just a few seconds.

Each minute, one of the two apple trees drops an apple. Bessie, having much practice, can catch an apple if she is standing under a tree from which one falls. While Bessie can walk between the two trees quickly (in much less than a minute), she can stand under only one tree at any time. Moreover, cows do not get a lot of exercise, so she is not willing to walk back and forth between the trees endlessly (and thus misses some apples).

Apples fall (one each minute) for T (1 <= T <= 1,000) minutes. Bessie is willing to walk back and forth at most W (1 <= W <= 30) times. Given which tree will drop an apple each minute, determine the maximum number of apples which Bessie can catch. Bessie starts at tree 1.

$Input$

* Line 1: Two space separated integers: T and W

* Lines 2..T+1: 1 or 2: the tree that will drop an apple each minute.

$Output$

* Line 1: The maximum number of apples Bessie can catch without walking more than W times.

$Sample~Input$

7 2
2
1
1
2
2
1
1

$Sample~Output$

6

Hint

INPUT DETAILS:

Seven apples fall - one from tree 2, then two in a row from tree 1, then two in a row from tree 2, then two in a row from tree 1. Bessie is willing to walk from one tree to the other twice.

OUTPUT DETAILS:

Bessie can catch six apples by staying under tree 1 until the first two have dropped, then moving to tree 2 for the next two, then returning back to tree 1 for the final two.

Source

 
[Submit]   [Go Back]   [Status]   [Discuss]

解法一:
  用一个数组$f_{i,j}$表示第$i$时刻,走了$j$步的最多苹果数。
  状态转移方程为:
    从第一棵苹果树出发:
      $$f_{i,j}=max\{f_{i-1,j},f_{i-1,j-1}\}+(j~\mod~2)= a_i$$
    从第二棵苹果树出发
      $$f_{i,j}=max\{f_{i-1,j},f_{i-1,j-1}\}+(j~\mod~2)\neq a_i$$
  $code:$
#include <cstdio>
#include <cstring>
#define max(a,b) ((a)>(b)?(a):(b))
using namespace std;

int read()
{
	int x=0,f=1;char c=getchar();
	while (c<'0' || c>'9'){if (c=='-')f=-1;c=getchar();}
	while (c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
	return x*f;
}

const int MAXN=1005;
const int MAXM=45;
int n,m;
int a[MAXN];
int f[MAXN][MAXM];

int main()
{
	n=read();m=read();
	for (int i=1;i<=n;i++) a[i]=read()-1;
	memset(f,0,sizeof(f));
	for (int i=1;i<=n;i++)
		for (int j=0;j<=m;j++)
			f[i][j]=max(f[i-1][j],f[i-1][j-1])+((j&1)==a[i]);
	int ans=0;
	for (int i=0;i<=m;i++)
		ans=max(ans,f[n][i]);
	memset(f,0,sizeof(f));
	for (int i=1;i<=n;i++)
		for (int j=0;j<=m;j++)
			f[i][j]=max(f[i-1][j],f[i-1][j-1])+((j&1)!=a[i]);
	for (int i=0;i<=m;i++)
		ans=max(ans,f[n][i]);
	printf("%d\n",ans);
	return 0;
}

 

 

 解法二:

  用一个数组$f_{i,j}$表示移动了$i$步,当前位置在第$j$棵苹果树下的时候的最多苹果数。

  对于第$k$棵树上掉下的一个苹果,要么是之前就已经移动$i$步到了第$k$棵树并等到苹果掉下,或者是移动$i-1$步,到另一棵树下,现在赶到这棵树下。状态转移方程为:

    $$f_{i,j}=max\{f_{i,j},f_{i-1,(j+1)\mod~2}\}+1$$

  $code:$

#include <iostream>
#include <cstdio>
using namespace std;

int read()
{
  	int x=0,f=1;char c=getchar();
  	while (c<'0' || c>'9'){if (c=='-')f=-1;c=getchar();}
  	while (c>='0'&&c<='9'){x=(x<<1)+(x<<3)+c-48;c=getchar();}
  	return x*f;
}
int n,w,come;
int a[31][2]={0};

int main()
{
    n=read();w=read();
    for(int i=1;i<=n;i++)
    {
        come=read()-1;
        for (int j=0;j<=w;j++)
        	a[j][come]=max(a[j][come]+1,a[j-1][(come+1)%2]+1);
    }
    printf("%d\n",max(a[w][0],a[w][1]));
    return 0;
}

 

 

 

转载于:https://www.cnblogs.com/lzxzy-blog/p/10714970.html

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值