hdu 3037——Saving Beans

本文探讨了松鼠在不同树木中储存豆子的问题,利用乘法逆元、Lucas定理和组合数公式,提出了一种算法解决方案,用于计算在特定条件下储存豆子的方法数量。文章提供了一个C++实现的代码示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Saving Beans

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 8258    Accepted Submission(s): 3302


Problem Description
Although winter is far away, squirrels have to work day and night to save beans. They need plenty of food to get through those long cold days. After some time the squirrel family thinks that they have to solve a problem. They suppose that they will save beans in n different trees. However, since the food is not sufficient nowadays, they will get no more than m beans. They want to know that how many ways there are to save no more than m beans (they are the same) in n trees.

Now they turn to you for help, you should give them the answer. The result may be extremely huge; you should output the result modulo p, because squirrels can’t recognize large numbers.
 

 

Input
The first line contains one integer T, means the number of cases.

Then followed T lines, each line contains three integers n, m, p, means that squirrels will save no more than m same beans in n different trees, 1 <= n, m <= 1000000000, 1 < p < 100000 and p is guaranteed to be a prime.
 

 

Output
You should output the answer modulo p.
 

 

Sample Input
2 1 2 5 2 1 5
 

 

Sample Output
3 3
Hint
Hint For sample 1, squirrels will put no more than 2 beans in one tree. Since trees are different, we can label them as 1, 2 … and so on. The 3 ways are: put no beans, put 1 bean in tree 1 and put 2 beans in tree 1. For sample 2, the 3 ways are: put no beans, put 1 bean in tree 1 and put 1 bean in tree 2.
这题涉及乘法逆元、Lucas定理、组合数公式。
通过分析题目可以得到方案数为C(n+m-1,n-1)%p
再通过化简得:方案数为C(m+n,m)%p
 
由于考虑到T的值很大,p的值较小,我们要对1...p 的阶乘打表
另外, 一定要注意0! = 1  !!!
血的教训
 
代码:
 1 #include <cstdio>
 2 #include <iostream>
 3 using namespace std;
 4 long long n,m,p;
 5 long long sum[500050];
 6 
 7 long long quick_mod(long long a,long long b)
 8 {
 9     long long ans=1;
10     while(b)
11     {
12         if(b&1)ans=ans*a%p;
13         b>>=1;
14         a=a*a%p;
15     }
16     return ans;
17 }
18 
19 long long C(long long n,long long m)
20 {
21     if(n<m)return 0;
22     return (sum[n]*quick_mod((sum[m]*sum[n-m])%p,p-2)%p)%p;
23 }
24 
25 long long Lucas(long long n,long long m)
26 {
27     if(m==0)return 1;
28     return C(n%p,m%p)*Lucas(n/p,m/p)%p;
29 }
30 
31 int main()
32 {
33     int cas=0;scanf("%d",&cas);
34     while(cas--)
35     {
36         scanf("%I64d%I64d%I64d",&n,&m,&p);
37         sum[0]=1;for(int i=1;i<=p;i++)sum[i]=sum[i-1]*i%p;
38         printf("%I64d\n",Lucas(n+m,m));
39     }
40     return 0;
41 }
View Code

 点个赞吧↓

转载于:https://www.cnblogs.com/lzxzy-blog/p/10320034.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值