/*UVa 10304 - Optimal Binary Search Tree
* e(i,j)为搜索一棵包含节点f[i]...f[j]的最优二叉搜索树的代价
* 如果区间规模增大,则要选出一个新的根节点,而区间上除了根节点左右最优解之外,
* 子树中每个节点要要增加一个高度
* k1 = max(k – 1, i),k2 = min(k + 1, j);
* e[i][j] = min(e[i][j], e[i][k1] + e[k2][j] + sum[j] – sum[i-1] – arr[k]);
* */
import java.util.*;
public class Main {
public static void main(String[] args) throws Exception {
Scanner scan = new Scanner(System.in);
while (scan.hasNextInt()) {
int n = scan.nextInt();
int arr[] = new int[n + 1];
int sum[] = new int[n + 1];
for (int i = 1; i <= n; i++) {
arr[i] = scan.nextInt();
}
int e[][] = new int[n + 1][n + 1];
for (int i = 1; i <= n; i++) {
sum[i] = arr[i];
sum[i] += sum[i - 1];
Arrays.fill(e[i], Integer.MAX_VALUE);
e[i][i] = 0;
}
for (int l = 1; l <= n-1; l++) {
for (int i = 1; i <= n - l; i++) {
int j = i + l;
for (int k = i; k <= j; k++) {
int k1 = Math.max(i, k - 1);
int k2 = Math.min(j, k + 1);
e[i][j] = Math.min(e[i][j], e[i][k1] + e[k2][j]
+ sum[j] - sum[i - 1] - arr[k]);
}
}
}
System.out.println(e[1][n]);
}
}
}
UVa 10304 - Optimal Binary Search Tree
最新推荐文章于 2021-06-21 00:16:32 发布