package kafkatest;
import kafka.api.FetchRequest;
import kafka.api.FetchRequestBuilder;
import kafka.api.PartitionOffsetRequestInfo;
import kafka.common.ErrorMapping;
import kafka.common.TopicAndPartition;
import kafka.javaapi.*;
import kafka.javaapi.consumer.SimpleConsumer;
import kafka.message.MessageAndOffset;
import java.nio.ByteBuffer;
import java.util.ArrayList;
import java.util.Collections;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
/*官方文档的翻译:
*一般情况下使用high level consumer即可,将数据依次读出来
*使用simpleconsumer的情景:
* 多次消费同一条数据;
* 在一个处理过程中只消费某个topic部分分区的数据;
* 自己写代码保证每一条消息仅被消费一次
*使用该接口需要的额外工作:
* 自己追踪消费的offset;
* 找出一个topic每一个分区的leader broker
* 自己处理leader broker的变迁,转移
*使用步骤:
* 找出你要消费的topic分区的leader broker
* 找出topic和partition的replica broker
* 构建request,封装定义感兴趣的数据,即指定topic和partition的消息
* 获取数据
* 应对broker的变化
*
*最简单的方法是:通过配置文件或者命令行传参,传递broker的信息。
*当然不必要是所有的broker列表,一部分live的即可,通过他们找到leader
**/
public class SimpleConsumerDemo {
// 成员变量
private List<String> m_replicaBrokers = new ArrayList<String>();
// 构造函数
public SimpleConsumerDemo() {
m_replicaBrokers = new ArrayList<String>();
}
/*参数:
**/
public static void main(String args[]) {
SimpleConsumerDemo example = new SimpleConsumerDemo();
long maxReads = Long.parseLong(args[0]);
String topic = args[1];
int partition = Integer.parseInt(args[2]);
List<String> seeds = new ArrayList<String>();
seeds.add(args[3]);
int port = Integer.parseInt(args[4]);
try {
example.run(maxReads, topic, partition, seeds, port);
} catch (Exception e) {
System.out.println("Oops:" + e);
e.printStackTrace();
}
}
public void run(long a_maxReads, String a_topic, int a_partition, List<String> a_seedBrokers, int a_port)
throws Exception {
//find the meta data about the topic and partition we are interested in
//找到指定topic、指定分区的元信息,从中消费
PartitionMetadata metadata = findLeader(a_seedBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
System.out.println("Can't find metadata for Topic and Partition. Exiting");
return;
}
if (metadata.leader() == null) {
System.out.println("Can't find Leader for Topic and Partition. Exiting");
return;
}
//此topic的该分区的leader broker
String leadBroker = metadata.leader().host();
String clientName = "Client_" + a_topic + "_" + a_partition;
//真的是所有的broker默认使用了同一个port吗???
SimpleConsumer consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
//从最开始消费数据
long readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.EarliestTime(),
clientName);
System.out.println(readOffset);
int numErrors = 0;
while (a_maxReads > 0) {
if (consumer == null) {
consumer = new SimpleConsumer(leadBroker, a_port, 100000, 64 * 1024, clientName);
}
//Note: this fetchSize of 100000 might need to be increased if large batches are written to Kafka
FetchRequest req = new FetchRequestBuilder().clientId(clientName)
.addFetch(a_topic, a_partition, readOffset, 100000)
.build();
FetchResponse fetchResponse = consumer.fetch(req);
/*simpleconsumer自己没有处理leader broker坏掉的情况,所以需要自己处理
**/
if (fetchResponse.hasError()) {
numErrors++;
// Something went wrong!
//得到错误代码
short code = fetchResponse.errorCode(a_topic, a_partition);
System.out.println("Error fetching data from the Broker:" + leadBroker + " Reason: " + code);
//累计够5次错误,结束while循环,不读消息了
if (numErrors > 5)
break;
//如果错误是offset超出有效范围.即offset无效,最简单的解决方案:获取最新的offset值,读最新的消息
if (code == ErrorMapping.OffsetOutOfRangeCode()) {
// We asked for an invalid offset. For simple case ask for
// the last element to reset
readOffset = getLastOffset(consumer, a_topic, a_partition, kafka.api.OffsetRequest.LatestTime(),
clientName);
continue;
}
consumer.close();
consumer = null;
//其他错误,则直接关闭consumer,找一个新的leader,继续消费
leadBroker = findNewLeader(leadBroker, a_topic, a_partition, a_port);
continue;
}//if error
//没有错误,直接消费数据
numErrors = 0;
long numRead = 0;
//读取消息
for (MessageAndOffset messageAndOffset : fetchResponse.messageSet(a_topic, a_partition)) {
long currentOffset = messageAndOffset.offset();
//消费到的offset不比刚开始申请的小,因为是从readOffset开始消费的,每消费一条,currentOffset++
if (currentOffset < readOffset) {
System.out.println("Found an old offset: " + currentOffset + " Expecting: " + readOffset);
continue;
}
readOffset = messageAndOffset.nextOffset();
//消息的负载
ByteBuffer payload = messageAndOffset.message().payload();
byte[] bytes = new byte[payload.limit()];
payload.get(bytes);
System.out.println(String.valueOf(messageAndOffset.offset()) + ": " + new String(bytes, "UTF-8"));
numRead++;
a_maxReads--;
}
if (numRead == 0) {
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}//while
if (consumer != null)
consumer.close();
}
/*消费者消费一个topic的指定partition时,从哪里开始读数据
*kafka.api.OffsetRequest.EarliestTime()找到日志中数据的最开始头位置,从那里开始消费(hadoop-consumer中使用的应该就是这种方式)
*kafka.api.OffsetRequest.LatestTime()只消费最新的数据
*注意,不要假设0是offset的初始值
*参数:long whichTime的取值即两种:
* kafka.api.OffsetRequest.LatestTime()
* kafka.api.OffsetRequest.LatestTime()
*返回值:一个long类型的offset*/
public static long getLastOffset(SimpleConsumer consumer, String topic, int partition, long whichTime,
String clientName) {
//topic和对应的partition封装成了一个对象,一个topic有好多个这样的对象
TopicAndPartition topicAndPartition = new TopicAndPartition(topic, partition);
Map<TopicAndPartition, PartitionOffsetRequestInfo> requestInfo = new HashMap<TopicAndPartition, PartitionOffsetRequestInfo>();
requestInfo.put(topicAndPartition, new PartitionOffsetRequestInfo(whichTime, 1));
/*同样有request、response
*获取这个topic的指定分区的offset信息*/
kafka.javaapi.OffsetRequest request = new kafka.javaapi.OffsetRequest(requestInfo,
kafka.api.OffsetRequest.CurrentVersion(), clientName);
OffsetResponse response = consumer.getOffsetsBefore(request);
if (response.hasError()) {
System.out.println(
"Error fetching data Offset Data the Broker. Reason: " + response.errorCode(topic, partition));
return 0;
}
long[] offsets = response.offsets(topic, partition);
return offsets[0];
}
/*每一个topic的不同分区有不同的leader
**/
private String findNewLeader(String a_oldLeader, String a_topic, int a_partition, int a_port) throws Exception {
for (int i = 0; i < 3; i++) {
boolean goToSleep = false;
PartitionMetadata metadata = findLeader(m_replicaBrokers, a_port, a_topic, a_partition);
if (metadata == null) {
goToSleep = true;
} else if (metadata.leader() == null) {
goToSleep = true;
} else if (a_oldLeader.equalsIgnoreCase(metadata.leader().host()) && i == 0) {
/*第一次找出的新leader和旧leader一样,那么给zookeeper一定的恢复时间
*first time through if the leader hasn't changed give
*ZooKeeper a second to recover
*第二次,假定该旧的broker确实已经恢复正常了,同时又被选为leader,或者根本就不是leader的问题,
*无论哪种情况,都不设置goToSleep
*second time, assume the broker did recover before failover,
*or it was a non-Broker issue*/
goToSleep = true;
} else {
return metadata.leader().host();//返回新leader的信息
}
if (goToSleep) {//goToSleep为true,那么休息一会,等待一下
try {
Thread.sleep(1000);
} catch (InterruptedException ie) {
}
}
}//for 尝试三次吗??
//三次之后,自动放弃
System.out.println("Unable to find new leader after Broker failure. Exiting");
throw new Exception("Unable to find new leader after Broker failure. Exiting");
}
/*寻找leader,通过命令行或者配置文件传入一个broker的列表,
*不需要是所有的broker,只需要从其中可以获得一个live broker以查询leader的信息即可
*参数: a_seedBrokers:已知的broker的列表
*但是只有一个端口号,有好多broker???
*返回值:指定分区的元数据,应该包含该分区的leader以及消息数目等
*/
private PartitionMetadata findLeader(List<String> a_seedBrokers, int a_port, String a_topic, int a_partition) {
PartitionMetadata returnMetaData = null;
loop: for (String seed : a_seedBrokers) {
SimpleConsumer consumer = null;
try {
/*simpleConsumer的构造函数:参数broker的IP、port、soTimeout、bufferSize、clientId
*hadoop-consumer中是从配置文件中读取这两个参数的soTimeout、bufferSize*/
consumer = new SimpleConsumer(seed, a_port, 100000, 64 * 1024, "leaderLookup");
List<String> topics = Collections.singletonList(a_topic);
//获取topic的元数据
TopicMetadataRequest req = new TopicMetadataRequest(topics);
kafka.javaapi.TopicMetadataResponse resp = consumer.send(req);
List<TopicMetadata> metaData = resp.topicsMetadata();
for (TopicMetadata item : metaData) {
/*从topic的元数据中获取partition的元数据
*topic的元数据中应该可以获知次topic有多少个分区
*int partition_num = item.partitionsMetadata().size();*/
for (PartitionMetadata part : item.partitionsMetadata()) {
if (part.partitionId() == a_partition) {
returnMetaData = part;
break loop;
}
}
}
} catch (Exception e) {
System.out.println("Error communicating with Broker [" + seed + "] to find Leader for [" + a_topic
+ ", " + a_partition + "] Reason: " + e);
} finally {
if (consumer != null)
consumer.close();
}
}
if (returnMetaData != null) {
m_replicaBrokers.clear();
for (kafka.cluster.Broker replica : returnMetaData.replicas()) {
m_replicaBrokers.add(replica.host());
}
}
return returnMetaData;
}
}