spark streaming 踩过的那些坑

  • 系统背景
  1. spark streaming + Kafka高级API receiver
  2. 目前资源分配(现在系统比较稳定的资源分配),独立集群
   --driver-memory 50G
   --executor-memory 8G
   --num-executors 11
   --executor-cores 5
  • 广播变量


1. 广播变量的初始化

    1.1.executor端,存放广播变量的对象使用非静态,因为静态变量是属于类的,不能使用构造函数来初始化。在executor端使用静态的时候,它只是定义的时候的一个状态,而在初始化时设置的值取不到。而使用非静态的对象,其构造函数的初始化在driver端执行,故在集群可以取到广播变量的值。

2. 广播变量的释放

    2.1.当filter增量为指定大小时,进行广播,虽然广播的是同一个对象,但是,广播的ID是不一样的,而且ID号越来越大,这说明对于广播来说,它并不是一个对象,而只是名字一样的不同对象,如果不对广播变量进行释放,将会导致executor端内存占用越来越大,而一直没有使用的广播变量,被进行GC,会导致GC开销超过使用上线,导致程序失败。
    2.2.解决方案:这广播之前,先调用unpersist()方法,释放不用的广播变量

  • 使用Kafka 的高级API receiver


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值