Reids源码分析--- 跳跃表

本文详细介绍了Redis中跳跃表(Skip List)的数据结构,包括其节点构成、查找效率、节点遍历方式以及如何在Redis中作为有序集合的底层实现。跳跃表支持平均O(logN)、最坏O(N)复杂度的查找,通过随机层数的节点提高查找速度,其简洁的实现和高效性能使其成为平衡树的一种实用替代。在Redis中,当有序集合元素较多或成员较长时,会选择使用跳跃表来存储。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Reids源码分析--- 跳跃表

跳跃表是一种有序数据结构,它通过在每个节点中维持多个指向其他节点的指针,从而达到快速访问节点的目的。

跳跃表支持平均O(logN)、最坏O(N)复杂度的节点查找,还可以通过顺序性操作来批量处理节点。

在大部分情况下,跳跃表的效率可以和平衡树相媲美,并未因为跳跃表的实现比平衡树要来得更为简单,所以有不少程序都适用跳跃表来代替平衡树。

Redis使用跳跃表作为有序集合的底层实现之一,如果一个有序集合包含的元素数量比较多,又或者有序集合中元素的成员是比较长的字符串时,Redis就会使用跳跃表来作为有序集合键的底层实现。

   跳跃表的实现

Redis的跳跃表有redis.h/zskiplistNode和redis.h/zskiplist两个结构定义,其中zskiplistNode结构用于表示跳跃表节点,而zskiplist结构则用于保存跳跃表节点的相关信息,比如节点的数量,以及指向表头节点和表尾节点的指针等等。

上图展示了一个跳跃表的示例,位于图片最左边的是zskiplist结构,该结构包含以下属性:

header:指向跳跃表的表头节点。

tail:指向跳跃表的表尾节点

level:记录目前跳跃表内,层数最大的那个节点的层数

length:记录跳跃表的长度,也即是,跳跃表目前包含节点的数量(表头节点不计算在内)

位于zskiplist结构右方的是四个zskiplistNode结构,该结构包含以下属性:

层(level):节点中用L1、L2、L3等字样标记节点的各个层,L1代表第一层,L2代表第二层,以此类推。每个层都带有两个属性:前进指针和跨度。前进指针用于访问位于表尾方向的其他节点,而跨度则记录了前进指针所指向节点和当前节点的距离。在上面的图中,连线上带有数字的箭头就代表前进指针,而那个数字就是跨度。当程序从表头向表尾进行遍历时,访问会沿着层的前进指针进行。

后退指针:节点中用BW字样标记节点的后退指针,它指向位于当前节点的前一个节点后退指针子啊程序从表尾向表头遍历时使用。

分值:各个节点中的1.0、2.0和3.0是节点所保存的分值。在跳跃表中,节点按各自所保存的分值从小到大排列。

成员对象:各个节点中的o1、o2和o3是节点所保存的成员对象。

注意表头节点和其他节点的构造是一样的:表头节点也有后退指针、分值和成员对象,不过表头节点的这些属性都不会被用到,所以途中省略了这些部分,只是显示了表头节点的各个层。

   跳跃表节点

跳跃表节点的实现由redis.h/zskiplistNode结构定义:

typedef struct zskiplistNode{

   //层

   struct zskiplistLevel{

      //前进指针

      struct zskiplistNode * froward;

      //跨度

      unsigned int span;

   }level[];

   //后退指针

   struct zskiplistNode *backward;

   //分值

   double score;

   //成员对象

   robj *obj;

}zskiplistNode;

1.层

跳跃表节点的level数组可以包含多个元素,每个元素都包含一个指向其他节点的指针,程序可以通过这些层来加快访问其他节点的速度,一般来说,层的数量越多,访问其他节点的速度就越快。

每次创建一个新的跳跃表节点的时候,程序都根据幂次定律随机生成一个介于1和32之间的作为level数组的大小,这个大小就是层的“高度”。

2.前进指针

每个层都有一个指向表尾方向的前进指针,用于从表头向表尾方向访问节点。图5-3用虚线表示出了表头向表尾方向,遍历跳跃表中所有节点的路径:

1)迭代程序首先访问跳跃表的第一个节点(表头),然后从第四层的前进指针移动到表中的第二个节点。

2)在第二个节点时,程序沿着第二层的前进指针移动到表中的第三个节点。

3)在第三个节点时,程序同样沿着第二层的前进指针移动到表中的第四个节点。

4)当程序再沿着第四个节点的前进指针移动时,它碰到了一个NULL,程序知道这时已经达到了跳跃表的表尾,于是结束这次遍历。

3.跨度

层的跨度用于记录两个节点之间的距离:

两个节点之间的跨度越大,它们相距的就越远。

指向NULL指针的所有前进指针的跨度都为0,因为他们没有连向任何节点。

初看上去,很容易以为跨度和遍历操作有关,但实际上并不是这样的,遍历操作只是使用前进指针就可以完成了,跨度实际上是用来计算排位的:在查找某个节点的过程中,将沿途访问过的所有层的跨度累积起来,得到的结果就是目标节点在跳跃表中的排位。

4.后退指针

节点的后退指针用于从表尾向表头方向访问节点:跟可以一次跳过多节点前进指针不同,因为每个节点只有一个后退指针,所以每次只能后退至前一个节点。

图5-6用虚线展示了如果从表尾向表头遍历跳跃表中的所有节点:程序首先通过跳跃表的tail指针访问尾节点,然后通过后退指针访问倒数第二个节点,之后再沿着后退指针访问倒数第三个节点,再之后遇到指向NULL的后退指针,于是访问结束。

5.分值和成员

节点的分值(score属性)是一个double类型的浮点数,跳跃表中的所有节点都按分值从小到大排序。

节点的成员对象(obj属性)是一个指针,它指向一个字符串对象,而字符串对象则保存着一个SDS值。

在同一个跳跃表中,各个节点保存的成员对象必须是唯一的,但是多个节点保存的分值却是可以相同的:分值相同的节点将按照成员对象在字典序中的大小来进行排序,成员对象较小的节点会排在前面(靠近表头的方向),而成员对象较大的节点则会排在后面(靠近表尾方向)。

   跳跃表

仅靠多个跳跃表节点就可以组成一个跳跃表,如图5-8所示

但通过使用一个zskiplist结构来持有这些节点,程序可以更方便的对整个跳跃表进行处理,比如快速访问跳跃的表的表头节点和表尾节点,或者快速访问跳跃表节点的数量(也即是跳跃表的长度)等信息。

zskiplis结构的定义如下:

typedef struct zskiplist{

   //表头节点和表尾节点

   structz skiplistNode *header,*tail;

   //表中节点的数量

   unsingned long length;

   //表中层数最大的节点的层数

   int level;

}zskiplist;

header和tail指针分别指向跳跃表的表头和表尾节点,通过这两个指针,程序定位表头节点和表尾节点的复杂度为O(1)。

通过使用length属性来记录节点的数量,程序可以在O(1)时间复杂度内返回跳跃表的长度。

level属性则用于在O(1)复杂度内获取跳跃表中层高最大的那个节点的层数量,注意表头节点的层高并不计算在内。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值