static的作用

在C语言中,static的字面意思很容易把我们导入歧途,其实它的作用有三条。

(1)先来介绍它的第一条也是最重要的一条:隐藏。

当我们同时编译多个文件时,所有未加static前缀的全局变量和函数都具有全局可见性。为理解这句话,我举例来说明。我们要同时编译两个源文件,一个是a.c,另一个是main.c。
下面是a.c的内容

  1. char a = 'A'// global variable   
  2. void msg()   
  3. {  
  4.     printf("Hello\n");   
  5. }  
char a = 'A'; // global variable
void msg() 
{
    printf("Hello\n"); 
}
下面是main.c的内容

  1. int main(void)  
  2. {      
  3.     extern char a;    // extern variable must be declared before use   
  4.     printf("%c ", a);  
  5.     (void)msg();  
  6.     return 0;  
  7. }  
int main(void)
{    
    extern char a;    // extern variable must be declared before use
    printf("%c ", a);
    (void)msg();
    return 0;
}
程序的运行结果是:
A Hello
你可能会问:为什么在a.c中定义的全局变量a和函数msg能在main.c中使用?前面说过,所有未加static前缀的全局变量和函数都具有全局可见性,其它的源文件也能访问。此例中,a是全局变量,msg是函数,并且都没有加static前缀,因此对于另外的源文件main.c是可见的。
如果加了static,就会对其它源文件隐藏。例如在a和msg的定义前加上static,main.c就看不到它们了。利用这一特性可以在不同的文件中定义同名函数和同名变量,而不必担心命名冲突。Static可以用作函数和变量的前缀,对于函数来讲,static的作用仅限于隐藏,而对于变量,static还有下面两个作用。

(2)static的第二个作用是保持变量内容的持久。存储在静态数据区的变量会在程序刚开始运行时就完成初始化,也是唯一的一次初始化。共有两种变量存储在静态存储区:全局变量和static变量,只不过和全局变量比起来,static可以控制变量的可见范围,说到底static还是用来隐藏的。虽然这种用法不常见,但我还是举一个例子。

  1. #include <stdio.h>   
  2.   
  3. int fun(void){  
  4.     static int count = 10;    // 事实上此赋值语句从来没有执行过   
  5.     return count--;  
  6. }  
  7.   
  8. int count = 1;  
  9.   
  10. int main(void)  
  11. {      
  12.     printf("global\t\tlocal static\n");  
  13.     for(; count <= 10; ++count)  
  14.         printf("%d\t\t%d\n", count, fun());      
  15.       
  16.     return 0;  
  17. }  
#include <stdio.h>

int fun(void){
    static int count = 10;    // 事实上此赋值语句从来没有执行过
    return count--;
}

int count = 1;

int main(void)
{    
    printf("global\t\tlocal static\n");
    for(; count <= 10; ++count)
        printf("%d\t\t%d\n", count, fun());    
    
    return 0;
}
程序的运行结果是:
global          local static
1               10
2               9
3               8
4               7
5               6
6               5
7               4
8               3
9               2
10              1

(3)static的第三个作用是默认初始化为0。其实全局变量也具备这一属性,因为全局变量也存储在静态数据区。在静态数据区,内存中所有的字节默认值都是0x00,某些时候这一特点可以减少程序员的工作量。比如初始化一个稀疏矩阵,我们可以一个一个地把所有元素都置0,然后把不是0的几个元素赋值。如果定义成静态的,就省去了一开始置0的操作。再比如要把一个字符数组当字符串来用,但又觉得每次在字符数组末尾加’\0’太麻烦。如果把字符串定义成静态的,就省去了这个麻烦,因为那里本来就是’\0’。不妨做个小实验验证一下。

  1. #include <stdio.h>   
  2.   
  3. int a;  
  4.   
  5. int main(void)  
  6. {  
  7.     int i;  
  8.     static char str[10];  
  9.   
  10.     printf("integer: %d;  string: (begin)%s(end)", a, str);  
  11.   
  12.     return 0;  
  13. }  
#include <stdio.h>

int a;

int main(void)
{
    int i;
    static char str[10];

    printf("integer: %d;  string: (begin)%s(end)", a, str);

    return 0;
}
程序的运行结果如下
integer: 0; string: (begin)(end)
最后对static的三条作用做一句话总结。首先static的最主要功能是隐藏,其次因为static变量存放在静态存储区,所以它具备持久性和默认值0。

基于STM32 F4的永磁同步电机无位置传感器控制策略研究内容概要:本文围绕基于STM32 F4的永磁同步电机(PMSM)无位置传感器控制策略展开研究,重点探讨在不依赖物理位置传感器的情况下,如何通过算法实现对电机转子位置和速度的精确估计与控制。文中结合嵌入式开发平台STM32 F4,采用如滑模观测器、扩展卡尔曼滤波或高频注入法等先进观测技术,实现对电机反电动势或磁链的估算,进而完成无传感器矢量控制(FOC)。同时,研究涵盖系统建模、控制算法设计、仿真验证(可能使用Simulink)以及在STM32硬件平台上的代码实现与调试,旨在提高电机控制系统的可靠性、降低成本并增强环境适应性。; 适合人群:具备一定电力电子、自动控制理论基础和嵌入式开发经验的电气工程、自动化及相关专业的研究生、科研人员及从事电机驱动开发的工程师。; 使用场景及目标:①掌握永磁同步电机无位置传感器控制的核心原理与实现方法;②学习如何在STM32平台上进行电机控制算法的移植与优化;③为开发高性能、低成本的电机驱动系统提供技术参考与实践指导。; 阅读建议:建议读者结合文中提到的控制理论、仿真模型与实际代码实现进行系统学习,有条件者应在实验平台上进行验证,重点关注观测器设计、参数整定及系统稳定性分析等关键环节。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值