pandas DataFrame(5)-合并DataFrame与Series

之前已经学过DataFrame与DataFrame相加,Series与Series相加,这篇介绍下DataFrame与Series的相加:

import pandas as pd

s = pd.Series([1, 2, 3, 4])
df = pd.DataFrame({
    0: [10, 20, 30, 40],
    1: [50, 60, 70, 80],
    2: [90, 100, 110, 120],
    3: [130, 140, 150, 160]
})
    
print df + s
    0   1    2    3
0  11  52   93  134
1  21  62  103  144
2  31  72  113  154
3  41  82  123  164

首先将Series的索引值和DataFrame的索引值相匹配, s[0] 是 1 , df[0] 是 [10,20,30,40] 

然后相当于向量化运算:  [10,20,30,40] + 1 ,得到: [11,21,31,41] 

无论索引值怎么变化,都是按照这个套路来进行运算:

s = pd.Series([1, 2, 3, 4])
df = pd.DataFrame({0: [10], 1: [20], 2: [30], 3: [40]})
    
print df + s
    0   1   2   3
0  11  22  33  44

s = pd.Series([1, 2, 3, 4])
df = pd.DataFrame({0: [10, 20, 30, 40]})
    
print df + s

 

转载于:https://www.cnblogs.com/liulangmao/p/9356116.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值