java基本数据类型

本文详细介绍了Java中的基本数据类型,包括byte、short、int、long、float、double、boolean和char的位数、最大存储数据量及数据范围。特别强调了float和double在数值赋值时的特殊要求。

纯粹是个人学习总结,如有不对的地方请吐槽。

byte:8位,最大存储数据量是255,存放的数据范围是-128~127之间。

short:16位,最大数据存储量是65536,数据范围是-32768~32767之间。

int:32位,最大数据存储容量是2的32次方减1,数据范围是负的2的31次方到正的2的31次方减1。

long:64位,最大数据存储容量是2的64次方减1,数据范围为负的2的63次方到正的2的63次方减1。

float:32位,数据范围在3.4e-45~1.4e38,直接赋值时必须在数字后加上f或F。

double:64位,数据范围在4.9e-324~1.8e308,赋值时可以加d或D也可以不加。

boolean:只有true和false两个取值。

char:占2字节,16位,数据范围在0~65535,char+int——类型均提升为int

String不算基本类型

原文地址丢失

内容概要:本文提出了一种基于融合鱼鹰算法和柯西变异的改进麻雀优化算法(OCSSA),用于优化变分模态分解(VMD)的参数,进而结合卷积神经网络(CNN)与双向长短期记忆网络(BiLSTM)构建OCSSA-VMD-CNN-BILSTM模型,实现对轴承故障的高【轴承故障诊断】基于融合鱼鹰和柯西变异的麻雀优化算法OCSSA-VMD-CNN-BILSTM轴承诊断研究【西储大学数据】(Matlab代码实现)精度诊断。研究采用西储大学公开的轴承故障数据集进行实验验证,通过优化VMD的模态数和惩罚因子,有效提升了信号分解的准确性与稳定性,随后利用CNN提取故障特征,BiLSTM捕捉时间序列的深层依赖关系,最终实现故障类型的智能识别。该方法在提升故障诊断精度与鲁棒性方面表现出优越性能。; 适合人群:具备一定信号处理、机器学习基础,从事机械故障诊断、智能运维、工业大数据分析等相关领域的研究生、科研人员及工程技术人员。; 使用场景及目标:①解决传统VMD参数依赖人工经验选取的问题,实现参数自适应优化;②提升复杂工况下滚动轴承早期故障的识别准确率;③为智能制造与预测性维护提供可靠的技术支持。; 阅读建议:建议读者结合Matlab代码实现过程,深入理解OCSSA优化机制、VMD信号分解流程以及CNN-BiLSTM网络架构的设计逻辑,重点关注参数优化与故障分类的联动关系,并可通过更换数据集进一步验证模型泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值