python_matplotlib

本文通过多个示例展示了如何使用Matplotlib库进行数据可视化,包括创建不同类型的图表、图例放置方式、颜色调整等,适合初学者快速上手。
import matplotlib.pyplot as plt
plt.subplot(211)
plt.plot([1,2,3], label="test1")
plt.plot([3,2,1], label="test2")
# Place a legend above this legend, expanding
#itself to fully use the given bounding box.
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102),
loc=3, ncol=2, mode="expand",
borderaxespad=0.)
plt.subplot(223)
plt.plot([1,2,3], label="test1")
plt.plot([3,2,1], label="test2")
# Place a legend to the right of this smaller
# figure.
plt.legend(bbox_to_anchor=(1.05, 1), loc=2,
borderaxespad=0.)
plt.show()
import numpy as np
import matplotlib.pyplot as plt
# Make some fake data.
a = b = np.arange(0,3, 0.02)
c = np.exp(a)
d = c[::-1]
#print c,d
# Create plots with pre-defined labels.
plt.plot(a, c, 'g--', label='Model length')
plt.plot(a, d, 'b:', label='Data length')
plt.plot(a, c+d, 'k', label='Total message length')
legend = plt.legend(loc='upper center',
shadow=True, fontsize='x-large')
# Put a nicer background color on the legend.
legend.get_frame().set_facecolor('#00FFCC')

plt.show()
import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)

x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'yo-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')

plt.show()
import matplotlib.pyplot as plt
import numpy as np

plt.ion()

x = np.arange(10)

fig = plt.figure()
ax = plt.subplot(111)

for i in xrange(5):
    ax.plot(x, i * x, label='$y = %ix$'%i)

# Put a legend to the right of the current axis
leg = ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))

plt.draw()

# Get the ax dimensions.
box = ax.get_position()
xlocs = (box.x0,box.x1)
ylocs = (box.y0,box.y1)

# Get the figure size in inches and the dpi.
w, h = fig.get_size_inches()
dpi = fig.get_dpi()

# Get the legend size, calculate new window width and change the figure size.
legWidth = leg.get_window_extent().width
winWidthNew = w*dpi+legWidth
fig.set_size_inches(winWidthNew/dpi,h)

# Adjust the window size to fit the figure.
mgr = plt.get_current_fig_manager()
mgr.window.wm_geometry("%ix%i"%(winWidthNew,mgr.window.winfo_height()))

# Rescale the ax to keep its original size.
factor = w*dpi/winWidthNew
x0 = xlocs[0]*factor
x1 = xlocs[1]*factor
width = box.width*factor
ax.set_position([x0,ylocs[0],x1-x0,ylocs[1]-ylocs[0]])

plt.draw()

# coding: utf-8

# In[8]:

def fab(n):
    n1=1
    n2=1
    n3=1
    if n<2:
        print ('输入有误!')
        return -1
    while n-2>0:
        n3=n2+n1
        n1=n2
        n2=n3
        n-=1
    return n3
result=fab(20)
if result!=-1:
    print "总共有%d对小兔崽子诞生!" , result


# In[ ]:

print 'this is a good day!'


# In[2]:

def f():
    print 'is a good day!'


f()


# In[6]:

from os import path
from scipy.misc import imread
import matplotlib.pyplot as plt

from wordcloud import WordCloud, STOPWORDS, ImageColorGenerator

# 获取当前文件路径
# __file__ 为当前文件, 在ide中运行此行会报错,可改为
d = path.dirname('.')
#d = path.dirname(__file__)

# 读取文本 alice.txt 在包文件的example目录下
#内容为
"""
Project Gutenberg's Alice's Adventures in Wonderland, by Lewis Carroll

This eBook is for the use of anyone anywhere at no cost and with
almost no restrictions whatsoever.  You may copy it, give it away or
re-use it under the terms of the Project Gutenberg License included
with this eBook or online at www.gutenberg.org
"""
text = open(path.join(d, 'alice.txt')).read()

# read the mask / color image
# taken from http://jirkavinse.deviantart.com/art/quot-Real-Life-quot-Alice-282261010
# 设置背景图片
alice_coloring = imread(path.join(d, "aaa.jpg"))

wc = WordCloud(background_color="white", #背景颜色max_words=2000,# 词云显示的最大词数
mask=alice_coloring,#设置背景图片
stopwords=STOPWORDS.add("said"),
max_font_size=40, #字体最大值
random_state=42)
# 生成词云, 可以用generate输入全部文本(中文不好分词),也可以我们计算好词频后使用generate_from_frequencies函数
wc.generate(text)
# wc.generate_from_frequencies(txt_freq)
# txt_freq例子为[('词a', 100),('词b', 90),('词c', 80)]
# 从背景图片生成颜色值
image_colors = ImageColorGenerator(alice_coloring)

# 以下代码显示图片
plt.imshow(wc)
plt.axis("off")
# 绘制词云
plt.figure()
# recolor wordcloud and show
# we could also give color_func=image_colors directly in the constructor
plt.imshow(wc.recolor(color_func=image_colors))
plt.axis("off")
# 绘制背景图片为颜色的图片
plt.figure()
plt.imshow(alice_coloring, cmap=plt.cm.gray)
plt.axis("off")
plt.show()
# 保存图片
wc.to_file(path.join(d, "名称.jpg"))


# In[19]:


""""
Masked wordcloud
================
Using a mask you can generate wordclouds in arbitrary shapes.
"""

from os import path
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt

from wordcloud import WordCloud, STOPWORDS

d = path.dirname('.')

# Read the whole text.
text = open(path.join(d, 'alice.txt')).read()

# read the mask image
# taken from
# http://www.stencilry.org/stencils/movies/alice%20in%20wonderland/255fk.jpg
alice_mask = np.array(Image.open(path.join(d, "NSSG.jpg")))

wc = WordCloud(background_color="white", max_words=2000, mask=alice_mask,
               stopwords=STOPWORDS.add("said"))
# generate word cloud
wc.generate(text)

# store to file
wc.to_file(path.join(d, "xiaorouhu.png"))

# show
plt.imshow(wc)
plt.axis("off")
plt.figure()
plt.imshow(alice_mask, cmap=plt.cm.gray)
plt.axis("off")
plt.show()


# In[17]:

"""
Using custom colors
====================
Using the recolor method and custom coloring functions.
"""

import numpy as np
from PIL import Image
from os import path
import matplotlib.pyplot as plt
import random

from wordcloud import WordCloud, STOPWORDS


def grey_color_func(word, font_size, position, orientation, random_state=None, **kwargs):
    return "hsl(0, 0%%, %d%%)" % random.randint(60, 100)

d = path.dirname('.')

# read the mask image
# taken from
# http://www.stencilry.org/stencils/movies/star%20wars/storm-trooper.gif
mask = np.array(Image.open(path.join(d, "NSSG.jpg")))

# movie script of "a new hope"
# http://www.imsdb.com/scripts/Star-Wars-A-New-Hope.html
# May the lawyers deem this fair use.
text = open("alice.txt").read()

# preprocessing the text a little bit
text = text.replace("HAN", "Han")
text = text.replace("LUKE'S", "Luke")

# adding movie script specific stopwords
stopwords = STOPWORDS.copy()
stopwords.add("int")
stopwords.add("ext")

wc = WordCloud(max_words=1000, mask=mask, stopwords=stopwords, margin=10,
               random_state=1).generate(text)
# store default colored image
default_colors = wc.to_array()
plt.title("Custom colors")
plt.imshow(wc.recolor(color_func=grey_color_func, random_state=3))
wc.to_file("a_new_hope.png")
plt.axis("off")
plt.figure()
plt.title("Default colors")
plt.imshow(default_colors)
plt.axis("off")
plt.show()


# In[16]:

#汉语专用的模块

"""
Minimal Example
===============
Generating a square wordcloud from the US constitution using default arguments.
"""

from os import path
from wordcloud import WordCloud

d = path.dirname('.')

text = open(path.join(d, 'constitution.txt')).read()
frequencies = [(u'知乎',5),(u'小段同学',4),(u'曲小花',3),(u'中文分词',2),(u'样例',1)]

#Generate a word cloud image 此处原为 text 方法,我们改用 frequencies 
wordcloud = WordCloud().generate(text)
wordcloud = WordCloud().fit_words(frequencies)

# Display the generated image:
# the matplotlib way:
import matplotlib.pyplot as plt
plt.imshow(wordcloud)
plt.axis("off")

# take relative word frequencies into account, lower max_font_size
wordcloud = WordCloud(max_font_size=40, relative_scaling=.5).generate(text)
wordcloud = WordCloud(max_font_size=40, relative_scaling=.5).fit_words(frequencies)
plt.figure()
plt.imshow(wordcloud)
plt.axis("off")
plt.show()

# The pil way (if you don't have matplotlib)
image = wordcloud.to_image()
image.show()


# In[ ]:

model = RandomForestRegressor(n_estimator = 100, oob_score = TRUE, n_jobs = -1,random_state =50,max_features = "auto", min_samples_leaf = 50)
model.fit(X,y)
from sklearn.ensemble import RandomForestRegressor
from sklearn.metrics import roc_auc_score
import pandas as pd
x = pd.read_csv("train.csv")
y = x.pop("Survived")
model =  RandomForestRegressor(n_estimator = 100 , oob_score = TRUE, random_state = 42)
model.fit(x(numeric_variable,y)

print "AUC - ROC : ", roc_auc_score(y,model.oob_prediction)


# In[23]:


from sklearn.ensemble import RandomForestClassifier #use RandomForestRegressor for regression problem
#Assumed you have, X (predictor) and Y (target) for training data set and x_test(predictor) of test_dataset
# Create Random Forest object
model= RandomForestClassifier(n_estimators=1000)
# Train the model using the training sets and check score
model.fit(X, y)
#Predict Output
predicted= model.predict(x_test)



# In[25]:

from sklearn.tree import DecisionTreeRegressor  
from sklearn.ensemble import RandomForestRegressor  
import numpy as np  

from sklearn.datasets import load_iris  
iris=load_iris()  
#print iris#iris的4个属性是:萼片宽度 萼片长度 花瓣宽度 花瓣长度 标签是花的种类:setosa versicolour virginica  
print iris['target'].shape  
rf=RandomForestRegressor()#这里使用了默认的参数设置  
rf.fit(iris.data[:150],iris.target[:150])#进行模型的训练  
#    
#随机挑选两个预测不相同的样本  
instance=iris.data[[100,109]]  
print instance  
print 'instance 0 prediction;',rf.predict(instance[0])  
print 'instance 1 prediction;',rf.predict(instance[1])  
print iris.target[100],iris.target[109]  


# In[26]:

import numpy as np
import pylab as pl


x=np.random.uniform(1,100,1000)
y=np.log(x)+np.random.normal(0,.3,1000)

pl.scatter(x,y,s=1,label="log(x) with noise")

pl.plot(np.arange(1,100),np.log(np.arange(1,100)),c="b",label="log(x) true function")
pl.xlabel("x")
pl.ylabel("f(x)=log(x)")
pl.legend(loc="best")
pl.title('A Basic Log Function')
pl.show()


# In[29]:

from sklearn.datasets import load_iris
from sklearn.ensemble import RandomForestClassifier
import pandas as pd
import numpy as np

iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df['is_train'] = np.random.uniform(0, 1, len(df)) <= .75
df['species'] = pd.Factor(iris.target, iris.target_names)
df.head()

train, test = df[df['is_train']==True], df[df['is_train']==False]

features = df.columns[:4]
clf = RandomForestClassifier(n_jobs=2)
y, _ = pd.factorize(train['species'])
clf.fit(train[features], y)

preds = iris.target_names[clf.predict(test[features])]
pd.crosstab(test['species'], preds, rownames=['actual'], colnames=['preds'])


# In[ ]:

import numpy as np
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.lda import LDA
from sklearn.qda import QDA

h = .02  # step size in the mesh

names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Decision Tree",
         "Random Forest", "AdaBoost", "Naive Bayes", "LDA", "QDA"]
classifiers = [
    KNeighborsClassifier(3),
    SVC(kernel="linear", C=0.025),
    SVC(gamma=2, C=1),
    DecisionTreeClassifier(max_depth=5),
    RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1),
    AdaBoostClassifier(),
    GaussianNB(),
    LDA(),
    QDA()]

X, y = make_classification(n_features=2, n_redundant=0, n_informative=2,
                           random_state=1, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)

datasets = [make_moons(noise=0.3, random_state=0),
            make_circles(noise=0.2, factor=0.5, random_state=1),
            linearly_separable
            ]

figure = plt.figure(figsize=(27, 9))
i = 1
# iterate over datasets
for ds in datasets:
    # preprocess dataset, split into training and test part
    X, y = ds
    X = StandardScaler().fit_transform(X)
    X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)

    x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
    y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
    xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
                         np.arange(y_min, y_max, h))

    # just plot the dataset first
    cm = plt.cm.RdBu
    cm_bright = ListedColormap(['#FF0000', '#0000FF'])
    ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
    # Plot the training points
    ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
    # and testing points
    ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright, alpha=0.6)
    ax.set_xlim(xx.min(), xx.max())
    ax.set_ylim(yy.min(), yy.max())
    ax.set_xticks(())
    ax.set_yticks(())
    i += 1

    # iterate over classifiers
    for name, clf in zip(names, classifiers):
        ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
        clf.fit(X_train, y_train)
        score = clf.score(X_test, y_test)

        # Plot the decision boundary. For that, we will assign a color to each
        # point in the mesh [x_min, m_max]x[y_min, y_max].
        if hasattr(clf, "decision_function"):
            Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
        else:
            Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1]

        # Put the result into a color plot
        Z = Z.reshape(xx.shape)
        ax.contourf(xx, yy, Z, cmap=cm, alpha=.8)

        # Plot also the training points
        ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
        # and testing points
        ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
                   alpha=0.6)

        ax.set_xlim(xx.min(), xx.max())
        ax.set_ylim(yy.min(), yy.max())
        ax.set_xticks(())
        ax.set_yticks(())
        ax.set_title(name)
        ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
                size=15, horizontalalignment='right')
        i += 1

figure.subplots_adjust(left=.02, right=.98)
plt.show()


# In[1]:


background_image_filename='sushiplate.jpg'
mouse_image_filename='fugu.png'
#set the picture name
import pygame
#import pygame lib
from pygame.locals import *
from sys import exit
pygame.init()
screen=pygame.display.set_mode((640,480),0,32)
pygame.display.set_caption("hello world!")
background=pygame.image.load(background_image_filename).convert()
mouse_cursor=pygame.image.load(mouse_image_filename).convert_alpha()

while True:
    for event in pygame.event.get():
        if event.type==QUIT:
            exit()

    screen.blit(background, (0,0))
    #
    x,y=pygame.mouse.get_pos()
    x-=mouse_cursor.get_width()/2
    y-=mouse_cursor.get_height()/2
    screen.blit(mouse_cursor,(x,y))
    pygame.display.update()



# In[11]:

import matplotlib.pyplot as plt
import numpy as np

plt.xticks(np.arange(6))

plt.show()



# In[5]:

import numpy as np
import matplotlib.pyplot as plt
# Make some fake data.
a = b = np.arange(0,3, 0.02)
c = np.exp(a)
d = c[::-1]
#print c,d
# Create plots with pre-defined labels.
plt.plot(a, c, 'g--', label='Model length')
plt.plot(a, d, 'b:', label='Data length')
plt.plot(a, c+d, 'k', label='Total message length')
legend = plt.legend(loc='upper center',
shadow=True, fontsize='x-large')
# Put a nicer background color on the legend.
legend.get_frame().set_facecolor('#00FFCC')

plt.show()


# In[2]:

import numpy as np
import matplotlib.pyplot as plt
x1 = np.linspace(0.0, 5.0)

x2 = np.linspace(0.0, 2.0)
y1 = np.cos(2 * np.pi * x1) * np.exp(-x1)
y2 = np.cos(2 * np.pi * x2)
plt.subplot(2, 1, 1)
plt.plot(x1, y1, 'yo-')
plt.title('A tale of 2 subplots')
plt.ylabel('Damped oscillation')
plt.subplot(2, 1, 2)
plt.plot(x2, y2, 'r.-')
plt.xlabel('time (s)')
plt.ylabel('Undamped')

plt.show()


# In[1]:

import matplotlib.pyplot as plt
plt.subplot(211)
plt.plot([1,2,3], label="test1")
plt.plot([3,2,1], label="test2")
# Place a legend above this legend, expanding
#itself to fully use the given bounding box.
plt.legend(bbox_to_anchor=(0., 1.02, 1., .102),
loc=3, ncol=2, mode="expand",
borderaxespad=0.)
plt.subplot(223)
plt.plot([1,2,3], label="test1")
plt.plot([3,2,1], label="test2")
# Place a legend to the right of this smaller
# figure.
plt.legend(bbox_to_anchor=(1.05, 1), loc=2,
borderaxespad=0.)
plt.show()


# In[22]:

import matplotlib.pyplot as plt
line1, = plt.plot([1,2,3], label="Line 1",
linestyle='--')
line2, = plt.plot([3,2,1], label="Line 2",
linewidth=12)
# Create a legend for the first line.
first_legend = plt.legend(handles=[line1], loc=1)
# Add the legend manually to the current Axes.
ax = plt.gca().add_artist(first_legend)
# Create another legend for the second line.
plt.legend(handles=[line2], loc=4)
plt.show()


# In[35]:

import numpy as np
import matplotlib.pyplot as plt
mu, sigma = 100, 15
x = mu + sigma * np.random.randn(10000)
# the histogram of the data
n, bins, patches = plt.hist(x, 50, normed=1,
facecolor='b', alpha=0.75)
plt.xlabel('Smarts')
plt.ylabel('Probability')
plt.title('Histogram of IQ')
#plt.text(60, .025, r'$\mu=100,\ \sigma=15$')
plt.text(60,0.020,r'$\mu=100,\ \sigma=15$')
plt.axis([40, 160, 0, 0.03])
plt.grid(False)
plt.show()


# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:




# In[ ]:


你遇到的这个错误: ```bash python: can't open file 'C:\\Users\\22609\\test_matplotlib.py': [Errno 2] No such file or directory ``` 意思是:**Python 找不到你指定的文件 `test_matplotlib.py`**,因为它不在当前目录下,或者你还没有创建它。 --- ## ✅ 错误原因分析 你在命令行中执行了: ```bash python test_matplotlib.py ``` 但你的当前路径是 `C:\Users\22609>`,而系统在这个目录里**没有找到名为 `test_matplotlib.py` 的文件**。 所以报错:`No such file or directory` --- ## ✅ 解决方案(4种方法任选其一) ### ✅ 方法 1:先确认文件是否存在 & 创建它 #### 步骤 1:打开文本编辑器(如记事本),粘贴以下代码并保存为 `test_matplotlib.py` ```python import matplotlib.pyplot as plt import numpy as np x = np.linspace(0, 10, 100) y = np.sin(x) plt.plot(x, y) plt.title("Matplotlib Working!") plt.show() ``` #### 步骤 2:将文件保存到 `C:\Users\22609\` 目录下 - 文件名必须是:`test_matplotlib.py` - 编码选择 UTF-8 - 不要保存成 `.txt`!确保扩展名是 `.py` > 💡 提示:在保存时,“另存为类型”选“所有文件”,然后输入 `test_matplotlib.py` --- ### ✅ 方法 2:使用命令行快速创建文件(Windows) 你可以直接在命令行中用 `echo` 命令创建测试文件: ```cmd echo import matplotlib.pyplot as plt>>test_matplotlib.py echo import numpy as np>>test_matplotlib.py echo.>>test_matplotlib.py echo x = np.linspace(0, 10, 100)>>test_matplotlib.py echo y = np.sin(x)>>test_matplotlib.py echo.>>test_matplotlib.py echo plt.plot(x, y)>>test_matplotlib.py echo plt.title("Matplotlib Working!")>>test_matplotlib.py echo plt.show()>>test_matplotlib.py ``` 这会在当前目录自动生成 `test_matplotlib.py` 文件。 然后运行: ```bash python test_matplotlib.py ``` --- ### ✅ 方法 3:切换到文件所在目录再运行 如果你把 `test_matplotlib.py` 放在了别的地方(比如桌面),就不能在 `C:\Users\22609>` 下直接运行。 你应该先进入对应目录: ```cmd cd C:\Users\22609\Desktop python test_matplotlib.py ``` 或如果是子文件夹: ```cmd cd C:\Users\22609\myproject python test_matplotlib.py ``` --- ### ✅ 方法 4:使用完整路径运行 也可以不切换目录,而是用**绝对路径**运行: ```cmd python C:\Users\22609\Desktop\test_matplotlib.py ``` 只要路径正确,就能执行。 --- ## 🔍 验证文件是否存在的小技巧 在命令行中输入: ```cmd dir *.py ``` 会列出当前目录下所有 `.py` 文件。如果看到: ```text test_matplotlib.py ``` 说明文件存在。 如果没有 → 回到方法 1 或 2 创建它。 --- ## ✅ 成功运行后的效果 当你成功运行后,会出现一个弹窗图形,显示一条正弦曲线: ![](https://matplotlib.org/stable/_images/simple_plot.png) 表示: ✅ Matplotlib 安装成功 ✅ Python 能正常绘图 ✅ 环境配置完成! --- ## ❗ 常见附加问题(提前预防) ### ❌ 报错:`ModuleNotFoundError: No module named 'matplotlib'` 说明还没安装成功。请先运行: ```bash pip install matplotlib -i https://pypi.tuna.tsinghua.edu.cn/simple --only-binary=all ``` 再尝试运行脚本。 --- ### ❌ 图形一闪而过就关闭? 这是正常的。如果你想让程序暂停查看图像,修改代码加入: ```python plt.show(block=True) # 默认就是 block=True,一般不需要改 input("按回车键退出...") # 加这一行可以防止窗口关闭太快 ``` --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

andrewbytecoder

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值