基于Python的B站排行榜大数据分析与可视化系统

本文介绍了使用Python开发的B站排行榜分析系统,通过网络爬虫抓取数据,进行整体和详细版块热度分析,提供词云和播放/点赞次数可视化,帮助用户探索热门内容和趋势。
部署运行你感兴趣的模型镜像

温馨提示:文末有 优快云 平台官方提供的学长 QQ 名片 :) 

1. 项目简介

        本文介绍了一项基于Python的B站排行榜大数据分析与可视化系统的研究。通过网络爬虫技术,系统能够自动分析B站网址,提取大量相关文本信息并存储在系统中。通过对这些信息进行统计分析,系统实现了B站排行榜热度的整体分析,热门版块的词云分析以及不同版块热度的详细分析。通过可视化的方式,用户可以清晰直观地了解B站各个排行榜的动态和热度趋势。本系统不仅提供了对B站内容的全面分析,还为用户提供了一种方便、直观的方式来探索和了解B站平台上的热门内容和趋势。

基于Python的B站排行榜大数据分析与可视化系统

2. 排行榜数据网络爬虫

        利用Python网络爬虫,采集排行榜数据:

# 爬取所有类别的排行榜数据
for cate in rank_urls:
    print('抓取{}栏目的排名TOP100的作品'.format(cate))
    rank_url = rank_urls[cate]

    resp = requests.get(rank_url, headers=headers)
    resp.encoding = 'utf8'
    soup = BeautifulSoup(resp.text, 'lxml')
    rank_list = soup.find(name='ul', attrs={'class': 'rank-list'})
    lis = rank_list.find_all(name='li')

    for li in lis:
        rank = li['data-rank']

        # ..........

        # title
        title = li.find('a', attrs={'class': 'title'})
        title = title.text.strip()

        detail = li.find('div', attrs={'class': 'detail-state'})
        spans = detail.find_all('span', attrs={'class': 'data-box'})
        # 播放次数
        play_count = spans[0].text.strip()
        # 点赞次数
        like_count = spans[1].text.strip()

        # 数据清洗,亿为单位的,统一为"万"为单位
        # ..........

        item_info = {
            'cate': cate,
            'rank': rank,
            'title': title,
            'play_count': play_count,
            'like_count': like_count
        }
        print(json.dumps(item_info, ensure_ascii=False))
        all_item_info.append(item_info)

# 数据存储        
# ..........

3. B站排行榜大数据分析与可视化系统

3.1 首页与注册登陆

3.2 排行榜热度整体分析

3.2.1 不同版块播放热度分布情况

3.2.2 不同版块点赞热度分布情况

3.3 版块热门作品词云可视化

3.5 版块热门作品播放次数与点赞次数

4. 总结

        基于Python的B站排行榜大数据分析与可视化系统通过网络爬虫技术,自动采集B站网址热门排行榜,提取大量相关文本信息并存储在系统中。通过对这些信息进行统计分析,系统实现了B站排行榜热度的整体分析,热门版块的词云分析以及不同版块热度的详细分析。通过可视化的方式,用户可以清晰直观地了解B站各个排行榜的动态和热度趋势。本系统不仅提供了对B站内容的全面分析,还为用户提供了一种方便、直观的方式来探索和了解B站平台上的热门内容和趋势。

欢迎大家点赞、收藏、关注、评论啦 ,由于篇幅有限,只展示了部分核心代码。技术交流、源码获取认准下方 优快云 官方提供的学长 QQ 名片 :)

精彩专栏推荐订阅:

1. Python 毕设精品实战案例
2. 自然语言处理 NLP 精品实战案例
3. 计算机视觉 CV 精品实战案例

您可能感兴趣的与本文相关的镜像

Python3.10

Python3.10

Conda
Python

Python 是一种高级、解释型、通用的编程语言,以其简洁易读的语法而闻名,适用于广泛的应用,包括Web开发、数据分析、人工智能和自动化脚本

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Python极客之家

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值