Horn-Schunck Method

Horn-Schunck method is a global method which introduces a global constraint of smoothness to solve the aperture problem in Optical Flow.

The flow is formulated as a global energy functional which is then sought to be minimized.

E(u,v)=∫∫[(Ixu+Iyv+It)2+α2(∣∣∇u∣∣2+∣∣∇v∣∣2)]dxdy E(u,v) = \int \int [(I_x u + I_yv + I_t)^2 + \alpha^2(||\nabla u||^2 + ||\nabla v||^2)] dx dy E(u,v)=[(Ixu+Iyv+It)2+α2(u2+v2)]dxdy
Because
[uv]=f([xy]) \begin{bmatrix} u \\ v \\ \end{bmatrix} = f(\begin{bmatrix} x \\ y \\ \end{bmatrix}) [uv]=f([xy])
By multi-dimensional Euler-Lagrange equation:
∂L∂u−∂∂x∂L∂ux−∂∂y∂L∂uy=0 \frac{\partial L}{\partial u} - \frac{\partial}{\partial x} \frac{\partial L}{\partial u_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial u_y} = 0 uLxuxLyuyL=0

∂L∂v−∂∂x∂L∂vx−∂∂y∂L∂vy=0 \frac{\partial L}{\partial v} - \frac{\partial}{\partial x} \frac{\partial L}{\partial v_x} - \frac{\partial}{\partial y} \frac{\partial L}{\partial v_y} = 0 v

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值