经典_STM32_ADC多通道采样

本文介绍了一个STM32 ADC多通道采集程序,实现了连续采集11路模拟信号并通过DMA传输到内存的功能。文章详细展示了配置过程,包括GPIO、RCC时钟、ADC及DMA的初始化设置。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

转载的STM32 ADC多通道采集 程序代码存在部分错误,但思路可用 另外这个函数库应该是V2.0或V1.8的 可作为学习参考用
并推荐网址:http://blog.youkuaiyun.com/devintt/article/details/46997985
http://blog.youkuaiyun.com/qq_27312943/article/details/51380987(库函数配置说明讲得详细)

STM32 ADC多通道转换
描述:用ADC连续采集11路模拟信号,并由DMA传输到内存。ADC配置为扫描并且连续转换模式,ADC的时钟配置为12MHZ。在每次转换结束后,由DMA循环将转换的数据传输到内存中。ADC可以连续采集N次求平均值。最后通过串口传输出最后转换的结果。
程序如下:

#i nclude "stm32f10x.h" //这个头文件包括STM32F10x所有外围寄存器、位、内存映射的定义
#i nclude "eval.h" //头文件(包括串口、按键、LED的函数声明)
#i nclude "SysTickDelay.h"
#i nclude "UART_INTERFACE.h"
#i nclude 

#define N 50 //每通道采50次
#define M 12 //为12个通道

vu16 AD_Value[N][M]; //用来存放ADC转换结果,也是DMA的目标地址
vu16 After_filter[M]; //用来存放求平均值之后的结果
int i;



void GPIO_Configuration(void)
{
GPIO_InitTypeDef GPIO_InitStructure;

GPIO_InitStructure.GPIO_Pin = GPIO_Pin_9;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF_PP; //因为USART1管脚是以复用的形式接到GPIO口上的,所以使用复用推挽式输出
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_Init(GPIOA, &GPIO_InitStructure);


GPIO_InitStructure.GPIO_Pin = GPIO_Pin_10;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_IN_FLOATING;
GPIO_Init(GPIOA, &GPIO_InitStructure);



//PA0/1/2 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0| GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚
GPIO_Init(GPIOA, &GPIO_InitStructure);

//PB0/1 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_0|GPIO_Pin_1;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚
GPIO_Init(GPIOB, &GPIO_InitStructure);

//PC0/1/2/3/4/5 作为模拟通道输入引脚
GPIO_InitStructure.GPIO_Pin =GPIO_Pin_0|GPIO_Pin_1|GPIO_Pin_2|GPIO_Pin_3|GPIO_Pin_4|GPIO_Pin_5;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AIN; //模拟输入引脚
GPIO_Init(GPIOC, &GPIO_InitStructure);
}

}


void RCC_Configuration(void)
{
ErrorStatus HSEStartUpStatus;

RCC_DeInit(); //RCC 系统复位
RCC_HSEConfig(RCC_HSE_ON); //开启HSE
HSEStartUpStatus = RCC_WaitForHSEStartUp(); //等待HSE准备好
if(HSEStartUpStatus == SUCCESS)
{
FLASH_PrefetchBufferCmd(FLASH_PrefetchBuffer_Enable); //Enable Prefetch Buffer
FLASH_SetLatency(FLASH_Latency_2); //Set 2 Latency cycles
RCC_HCLKConfig(RCC_SYSCLK_Div1); //AHB clock = SYSCLK
RCC_PCLK2Config(RCC_HCLK_Div1); //APB2 clock = HCLK
RCC_PCLK1Config(RCC_HCLK_Div2); //APB1 clock = HCLK/2
RCC_PLLConfig(RCC_PLLSource_HSE_Div1, RCC_PLLMul_6); //PLLCLK = 12MHz * 6 = 72MHz
RCC_PLLCmd(ENABLE); //Enable PLL
while(RCC_GetFlagStatus(RCC_FLAG_PLLRDY) == RESET); //Wait till PLL is ready
RCC_SYSCLKConfig(RCC_SYSCLKSource_PLLCLK); //Select PLL as system clock source
while(RCC_GetSYSCLKSource() != 0x08); //Wait till PLL is used as system clocksource

RCC_APB2PeriphClockCmd(RCC_APB2Periph_GPIOA|RCC_APB2Periph_GPIOB
| RCC_APB2Periph_GPIOC |RCC_APB2Periph_ADC1 | RCC_APB2Periph_AFIO|RCC_APB2Periph_USART1, ENABLE ); //使能ADC1通道时钟,各个管脚时钟

RCC_ADCCLKConfig(RCC_PCLK2_Div6); //72M/6=12,ADC最大时间不能超过14M
RCC_AHBPeriphClockCmd(RCC_AHBPeriph_DMA1, ENABLE); //使能DMA传输

}
}


void ADC1_Configuration(void)
{
ADC_InitTypeDef ADC_InitStructure;

ADC_DeInit(ADC1); //将外设 ADC1 的全部寄存器重设为缺省值


ADC_InitStructure.ADC_Mode = ADC_Mode_Independent; //ADC工作模式:ADC1和ADC2工作在独立模式
ADC_InitStructure.ADC_ScanConvMode =ENABLE; //模数转换工作在扫描模式
ADC_InitStructure.ADC_ContinuousConvMode = ENABLE; //模数转换工作在连续转换模式
ADC_InitStructure.ADC_ExternalTrigConv = ADC_ExternalTrigConv_None; //外部触发转换关闭
ADC_InitStructure.ADC_DataAlign = ADC_DataAlign_Right; //ADC数据右对齐
ADC_InitStructure.ADC_NbrOfChannel = M; //顺序进行规则转换的ADC通道的数目
ADC_Init(ADC1, &ADC_InitStructure); //根据ADC_InitStruct中指定的参数初始化外设ADCx的寄存器


//设置指定ADC的规则组通道,设置它们的转化顺序和采样时间
//ADC1,ADC通道x,规则采样顺序值为y,采样时间为239.5周期
ADC_RegularChannelConfig(ADC1, ADC_Channel_0, 1, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_1, 2, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_2, 3, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_3, 4, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_8, 5, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_9, 6, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_10, 7, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_11, 8, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_12, 9, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_13, 10, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_14, 11, ADC_SampleTime_239Cycles5 );
ADC_RegularChannelConfig(ADC1, ADC_Channel_15, 12, ADC_SampleTime_239Cycles5 );

// 开启ADC的DMA支持(要实现DMA功能,还需独立配置DMA通道等参数)
ADC_DMACmd(ADC1, ENABLE);

ADC_Cmd(ADC1, ENABLE); //使能指定的ADC1

ADC_ResetCalibration(ADC1); //复位指定的ADC1的校准寄存器

while(ADC_GetResetCalibrationStatus(ADC1)); //获取ADC1复位校准寄存器的状态,设置状态则等待


ADC_StartCalibration(ADC1); //开始指定ADC1的校准状态

while(ADC_GetCalibrationStatus(ADC1)); //获取指定ADC1的校准程序,设置状态则等待


}


void DMA_Configuration(void)
{

DMA_InitTypeDef DMA_InitStructure;
DMA_DeInit(DMA1_Channel1); //将DMA的通道1寄存器重设为缺省值
DMA_InitStructure.DMA_PeripheralBaseAddr =(u32)&ADC1->DR; //DMA外设ADC基地址,***一定不要丢失取地址符号“&”,否则出现乱码***
DMA_InitStructure.DMA_MemoryBaseAddr =(u32)&AD_Value; //DMA内存基地址,***一定不要丢失取地址符号“&”,否则出现乱码***
DMA_InitStructure.DMA_DIR = DMA_DIR_PeripheralSRC;//内存作为数据传输的目的地
DMA_InitStructure.DMA_BufferSize = N*M; //DMA通道的DMA缓存的大小
DMA_InitStructure.DMA_PeripheralInc =DMA_PeripheralInc_Disable; //外设地址寄存器不变
DMA_InitStructure.DMA_MemoryInc =DMA_MemoryInc_Enable; //内存地址寄存器递增
DMA_InitStructure.DMA_PeripheralDataSize =DMA_PeripheralDataSize_HalfWord; //数据宽度为16位
DMA_InitStructure.DMA_MemoryDataSize =DMA_MemoryDataSize_HalfWord; //数据宽度为16位
DMA_InitStructure.DMA_Mode = DMA_Mode_Circular; //工作在循环缓存模式
DMA_InitStructure.DMA_Priority =DMA_Priority_High; //DMA通道 x拥有高优先级
DMA_InitStructure.DMA_M2M = DMA_M2M_Disable; //DMA通道x没有设置为内存到内存传输
DMA_Init(DMA1_Channel1, &DMA_InitStructure);//根据DMA_InitStruct中指定的参数初始化DMA的通道

}


//配置所有外设
void Init_All_Periph(void)
{

RCC_Configuration();

GPIO_Configuration();

ADC1_Configuration();

DMA_Configuration();

//USART1_Configuration();
USART_Configuration(9600);


}



u16 GetVolt(u16 advalue)

{

return (u16)(advalue * 330 / 4096); //求的结果扩大了100倍,方便下面求出小数

}




void filter(void)
{
int sum = 0;
u8 count;
for(i=0;i<M;i++)

{

for ( count=0;count<N;count++)

{

sum += AD_Value[count][i];

}

After_filter[i]=sum/N;

sum=0;
}

}




int main(void)
{

u16 value[M];

init_All_Periph();
SysTick_Initaize();


ADC_SoftwareStartConvCmd(ADC1, ENABLE);
DMA_Cmd(DMA1_Channel1, ENABLE); //启动DMA通道
while(1)
{
while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);//等待传输完成否则第一位数据容易丢失

filter();
for(i=0;i<12;i++)
{
value[i]= GetVolt(After_filter[i]);

printf("value[%d]:t%d.%dvn",i,value[i]/100,value[i]/10) ;
delay_ms(100);
}
}

}

总结
该程序中的两个宏定义,M和N,分别代表有多少个通道,每个通道转换多少次,可以修改其值。
曾出现的问题:配置时钟时要知道外部晶振是多少,以便准确配置时钟。将转换值由二进制转换为十进制时,要先扩大100倍,方便显示小数。最后串口输出时在 printf语句之前加这句代码,防止输出的第一位数据丢失:while(USART_GetFlagStatus(USART1,USART_FLAG_TXE)==RESET);

### STM32 ADC多通道采样实现方法 #### 一、STM32CubeMX配置 在STM32CubeMX中配置ADC多通道采样的主要步骤如下: 1. **启用ADC外设** 在Pinout & Configuration界面找到并开启ADC功能。 2. **设置参数** - 设置`Mode`为Independent模式(如果仅使用单一ADC)。 - 配置`Clock Prescaler`以调整ADC时钟频率[^1]。 - 启用`Scan Conversion Mode`以便支持多个通道的轮询采样[^3]。 - 如果需要连续采样,可以启用`Continuous Conversion Mode`[^2]。 - 配置`Data Alignment`为右对齐或左对齐,通常推荐右对齐方便处理数据[^2]。 - 添加要使用的输入通道到`Ranks`列表中,并指定其对应的序列号和采样时间[^1]。 3. **DMA配置** 若要通过DMA传输数据,则需进一步操作: - 将`DMA Settings`中的请求方向设定为Peripheral to Memory。 - 设定存储区大小等于所选通道数乘以每次读取的数据长度[^4]。 #### 二、Keil MDK编程部分 以下是基于HAL库的一个简单示例程序展示如何获取来自不同模拟输入端口上的电压值。 ```c #include "main.h" #include <stdio.h> #define NUM_CHANNELS 2 // 假设有两个通道被测量 uint16_t adc_raw_values[NUM_CHANNELS]; // 存储原始AD转换结果数组 float voltages[NUM_CHANNELS]; // 转换成实际伏特数值后的容器 void SystemClock_Config(void); static void MX_GPIO_Init(void); static void MX_ADC1_Init(void); // 获取单次ADC值函数定义 uint16_t Get_adc(uint8_t channel){ __HAL_ADC_CLEAR_FLAG(&hadc1, ADC_FLAG_EOC); HAL_ADC_Start(&hadc1); while(__HAL_ADC_GET_FLAG(&hadc1, ADC_FLAG_EOC)==RESET); return HAL_ADC_GetValue(&hadc1); } int main(void){ HAL_Init(); SystemClock_Config(); MX_GPIO_Init(); MX_ADC1_Init(); /* 初始化LED闪烁 */ HAL_GPIO_WritePin(LD2_GPIO_Port, LD2_Pin, GPIO_PIN_RESET); while (1) { for(int i=0;i<NUM_CHANNELS;i++){ adc_raw_values[i]=Get_adc(i+1); // 注意这里是从第一个有效物理信道开始编号 voltages[i]=(adc_raw_values[i]*3.3)/4096; } char buffer[50]; sprintf(buffer,"CH1=%.4fV CH2=%.4fV\r\n",voltages[0],voltages[1]); puts(buffer); HAL_Delay(1000); HAL_GPIO_TogglePin(LD2_GPIO_Port,LD2_Pin); } } ``` 此代码片段展示了基本逻辑流程:先初始化硬件资源;接着在一个无限循环里逐一对各路信号执行A/D变换并将所得数字量映射回真实世界单位——伏特;最后利用串口打印当前检测状态信息以及周期性改变板载指示灯的状态作为运行标志。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值