Database Restore and Recovery Procedure: Outline

本文概述了使用RMAN进行数据库备份恢复的基本步骤:确定要从备份中恢复的文件及其位置;将数据库置于适当的恢复状态;从备份中恢复丢失的文件;对已恢复的数据文件执行介质恢复;完成最终步骤使数据库重新可用。

The basic procedure for performing restore and recovery with RMAN is as follows:
1. Determine which database files must be restored from backup, and which backups
(which specific tapes, or specific backup sets or image copies on disk) to use for
the restore operation.
The files to be restored may include the control file, SPFILE,
archived redo log files, and datafiles.


2. Place the database in the state appropriate for the type of recovery that you are
performing.
For example, if you are recovering a single tablespace or datafile, then
you can keep the database open and take the tablespace or datafile offline. If you
are restoring all datafiles, then you must shut down the database and then mount
it before you can perform the restore.


3. Restore lost database files from backup with the RESTORE command. You may
restore files to their original locations, or you may have to restore them to other
locations if, for instace, a disk has failed. You may also have to update the SPFILE
if you have changed the control file locations, or the control file if you have
changed the locations of datafiles or redo logs.


4. Perform media recovery on restored datafiles, if any, with the RECOVER command.


5. Perform any final steps required to make the database available for users again .
For example, re-open the database if necessary, as happens when restoring lost
control files, or bring offline tablespaces online if restoring and recovering
individual tablespaces.



This outline is intended to encompass a wide range of different scenarios. Depending
upon your situation, some of the steps described may not apply. (For example, you do
not need to perform media recovery if the only file restored from backup is the
SPFILE.) You will have to devise your final recovery plan based on your situation.

内容概要:本文介绍了一个基于MATLAB实现的无人机三维路径规划项目,采用蚁群算法(ACO)与多层感知机(MLP)相结合的混合模型(ACO-MLP)。该模型通过三维环境离散化建模,利用ACO进行全局路径搜索,并引入MLP对环境特征进行自适应学习与启发因子优化,实现路径的动态调整与多目标优化。项目解决了高维空间建模、动态障碍规避、局部最优陷阱、算法实时性及多目标权衡等关键技术难题,结合并行计算与参数自适应机制,提升了路径规划的智能性、安全性和工程适用性。文中提供了详细的模型架构、核心算法流程及MATLAB代码示例,涵盖空间建模、信息素更新、MLP训练与融合优化等关键步骤。; 适合人群:具备一定MATLAB编程基础,熟悉智能优化算法与神经网络的高校学生、科研人员及从事无人机路径规划相关工作的工程师;适合从事智能无人系统、自动驾驶、机器人导航等领域的研究人员; 使用场景及目标:①应用于复杂三维环境下的无人机路径规划,如城市物流、灾害救援、军事侦察等场景;②实现飞行安全、能耗优化、路径平滑与实时避障等多目标协同优化;③为智能无人系统的自主决策与环境适应能力提供算法支持; 阅读建议:此资源结合理论模型与MATLAB实践,建议读者在理解ACO与MLP基本原理的基础上,结合代码示例进行仿真调试,重点关注ACO-MLP融合机制、多目标优化函数设计及参数自适应策略的实现,以深入掌握混合智能算法在工程中的应用方法。
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值