1. 代码
package cn.edu.xjtu.wordcount;
import java.io.IOException;
import java.util.StringTokenizer;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
public class WordCounter extends Configured implements Tool{
public static class WordCountMapper extends
Mapper<LongWritable, Text, Text, IntWritable>{
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context)
throws IOException, InterruptedException {
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while(tokenizer.hasMoreElements()){
word.set(tokenizer.nextToken());
context.write(word, one);
}
}
}
public static class WordCountReducer extends
Reducer<Text, IntWritable, Text, IntWritable>{
public void reduce(Text key, Iterable<IntWritable> values, Context context)
throws IOException, InterruptedException {
int sum = 0;
for(IntWritable val : values){
sum += val.get();
}
context.write(key, new IntWritable(sum));
}
}
public int run(String[] args) throws Exception{
Job job = new Job(getConf());
job.setJarByClass(WordCounter.class);
job.setJobName("WordCount");
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
job.setInputFormatClass(TextInputFormat.class);
job.setOutputFormatClass(TextOutputFormat.class);
job.setMapperClass(WordCountMapper.class);
job.setCombinerClass(WordCountReducer.class);
job.setReducerClass(WordCountReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
boolean success = job.waitForCompletion(true);
return success ? 0: 1;
}
public static void main(String[] args) throws Exception{
int ret = ToolRunner.run(new WordCounter(), args);
System.exit(ret);
}
}2. 测试数据 input.txt,传到node14
3. 从eclipse中export出app.jar,传到node14
4. 执行
[hadoop@node14 app]$ hadoop fs -put input.txt input.txt
[hadoop@node14 app]$ hadoop jar app.jar cn.edu.xjtu.wordcount.WordCounter input.txt outputDir
查看结果
[hadoop@node14 app]$ hadoop fs -ls outputDir
[hadoop@node14 app]$ hadoop fs -cat outputDir/part-r-00000
本文详细介绍了如何使用 Java 和 Hadoop MapReduce 实现单词计数程序,包括代码实现、测试数据输入及执行流程,展示了如何将数据从本地文件上传至 HDFS 并进行分布式计算。
2070

被折叠的 条评论
为什么被折叠?



