332. Reconstruct Itinerary**

本文介绍了一种使用优先队列的数据结构来解决机票行程重建问题的方法。该算法通过确保每次访问机场时选择字典序最小的目的地,从而找到从JFK出发的最小字典序行程路径。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Given a list of airline tickets represented by pairs of departure and arrival airports [from, to], reconstruct the itinerary in order. All of the tickets belong to a man who departs from JFK. Thus, the itinerary must begin with JFK.

Note:

  1. If there are multiple valid itineraries, you should return the itinerary that has the smallest lexical order when read as a single string. For example, the itinerary ["JFK", "LGA"] has a smaller lexical order than ["JFK", "LGB"].
  2. All airports are represented by three capital letters (IATA code).
  3. You may assume all tickets form at least one valid itinerary.

Example 1:
tickets = [["MUC", "LHR"], ["JFK", "MUC"], ["SFO", "SJC"], ["LHR", "SFO"]]
Return ["JFK", "MUC", "LHR", "SFO", "SJC"].

Example 2:
tickets = [["JFK","SFO"],["JFK","ATL"],["SFO","ATL"],["ATL","JFK"],["ATL","SFO"]]
Return ["JFK","ATL","JFK","SFO","ATL","SFO"].
Another possible reconstruction is ["JFK","SFO","ATL","JFK","ATL","SFO"]. But it is larger in lexical order.

public class Solution {
    public List<String> findItinerary(String[][] tickets) {
        for (String[] ticket : tickets)
            targets.computeIfAbsent(ticket[0], k -> new PriorityQueue()).add(ticket[1]);
        visit("JFK");
        return route;
    }
    
    Map<String, PriorityQueue<String>> targets = new HashMap<>();
    List<String> route = new LinkedList();
    
    void visit(String airport) {
        while(targets.containsKey(airport) && !targets.get(airport).isEmpty())
            visit(targets.get(airport).poll());
        route.add(0, airport);
    }
}
总结:priorityqueue实现小顶堆

public List<String> findItinerary(String[][] tickets) {
    Map<String, PriorityQueue<String>> targets = new HashMap<>();
    for (String[] ticket : tickets)
        targets.computeIfAbsent(ticket[0], k -> new PriorityQueue()).add(ticket[1]);
    List<String> route = new LinkedList();
    Stack<String> stack = new Stack<>();
    stack.push("JFK");
    while (!stack.empty()) {
        while (targets.containsKey(stack.peek()) && !targets.get(stack.peek()).isEmpty())
            stack.push(targets.get(stack.peek()).poll());
        route.add(0, stack.pop());
    }
    return route;
}

Example:

enter image description here

From JFK we first visit JFK -> A -> C -> D -> A. There we're stuck, so we write down A as the end of the route and retreat back to D. There we see the unused ticket to B and follow it: D -> B -> C -> JFK -> D. Then we're stuck again, retreat and write down the airports while doing so: Write down D before the already written A, then JFK before the D, etc. When we're back from our cycle at D, the written route is D -> B -> C -> JFK -> D -> A. Then we retreat further along the original path, prepending C, A and finally JFK to the route, ending up with the route JFK -> A -> C -> D -> B -> C -> JFK -> D -> A.



内容概要:本文系统介绍了基于C#(VS2022+.NET Core)与HALCON 24.11的工业视觉测量拟合技术,涵盖边缘提取、几何拟合、精度优化及工业部署全流程。文中详细解析了亚像素边缘提取、Tukey抗噪算法、SVD平面拟合等核心技术,并提供了汽车零件孔径测量、PCB焊点共面性检测等典型应用场景的完整代码示例。通过GPU加速、EtherCAT同步等优化策略,实现了±0.01mm级测量精度,满足ISO 1101标准。此外,文章还探讨了深度学习、量子启发式算法等前沿技术的应用前景。 适合人群:具备一定编程基础,尤其是熟悉C#和HALCON的工程师或研究人员,以及从事工业视觉测量与自动化检测领域的技术人员。 使用场景及目标:①学习如何使用C#和HALCON实现高精度工业视觉测量系统的开发;②掌握边缘提取、抗差拟合、3D点云处理等核心技术的具体实现方法;③了解工业部署中的关键技术,如GPU加速、EtherCAT同步控制、实时数据看板等;④探索基于深度学习和量子计算的前沿技术在工业视觉中的应用。 其他说明:本文不仅提供了详细的理论分析和技术实现,还附有完整的代码示例和实验数据,帮助读者更好地理解和实践。同时,文中提到的硬件选型、校准方法、精度验证等内容,为实际项目实施提供了重要参考。文章最后还给出了未来的技术演进方向和开发者行动建议,如量子-经典混合计算、自监督学习等,以及参与HALCON官方认证和开源社区的建议。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值